
D
ra
ft

1/14

JJ
II
J
I

Back

Close

OPENMP COMPUTING OF A REFERENCE
SOLUTION FOR COUPLED LORENZ SYSTEM ON

[0,400]

I. Hristov, R. Hristova, S. Dimova, P. Armyanov, N. Shegunov
FMI, So�a University, Bulgaria

I. Puzynin, T. Puzynina, Z. Sharipov, Z. Tukhliev
MLIT, JINR, Dubna

Conference GRID'2021, July 5-9, MLIT, JINR, Dubna

D
ra
ft

2/14

JJ
II
J
I

Back

Close

The model problem

We consider as a model problem a coupled Lorenz system:

dx

dt
= a(y − x)

dy

dt
= rsx− y − xz − εsXY

dz

dt
= xy − bz

dX

dt
= ca(Y −X)

dY

dt
= c(rfX − Y −XZ) + εfXy

dZ

dt
= c(XY − bZ)

(1)

where a = 10, b = 8/3, c = 10, rs = 28, rf = 45, εs = 10−2,
εf = 10. For these parameters the system has a chaotic attractor. The
�rst three and last three equations are called slow and fast dynamics
respectively.

D
ra
ft

3/14

JJ
II
J
I

Back

Close

Sensitive dependence on initial conditions

δ(t) ∼ δ(0)eλt

λ > 0 is the Lyapunov exponent.
Predictability horizon (Lyapunov time) T is de�ned by:

T =
1

λ
ln(
tol

ε
)

where tol is our tolerance and ε is the round-o� unit (precision).
For coupled Lorenz system λ = 11.5. If we use the standard double
precision (ε = 2−53) and tolerance tol = 10−3, then T ≈ 2.5.

D
ra
ft

4/14

JJ
II
J
I

Back

Close

What do we need to obtain a reliable long-term solution?

We need:

1. A multiple-precision �oating point arithmetic.

2. A numerical method, which steps e�ciently at the level of the
precision, i.e. method, which allows arbitrary high order of accuracy.

3. If the time interval for the reference solution is very long, the
computational problem can become large and we need parallelization
of the algorithm.

In our work we use:

1. GMP library (The GNU Multiple Precision Arithmetic Library)

2. Taylor Series Method

3. OpenMP parallel technology for parallelization.

D
ra
ft

5/14

JJ
II
J
I

Back

Close

Taylor series method

Generally we want to solve numerically the initial value problem

X
′
(t) = f(X(t)), t ∈ [0, T]

X(0) = X0

with the multiple-precision Taylor series method. We assume that f is
analytic on its domain of de�nition and that X(t) is de�ned in [0, T].

With N-th order Taylor series method the approximate solution X̃(tn)
is:

X̃(t0) = X0

X̃(tn+1) = X̃(tn)+X̃
′
(tn)τ+

X̃
′′
(tn)

2!
τ 2+.......+

X̃(N)(tn)

N !
τN

D
ra
ft

6/14

JJ
II
J
I

Back

Close

Clean Numerical Simulation (CNS)

Actually we use a numerical procedure, proposed by Shijun Liao,
called �Clean Numerical Simulation�, for obtaining a reliable long-term
solution of a chaotic dynamical system [1]. The procedure is based on
multiple precision Taylor series method.

[1] Liao, Shijun.�On the reliability of computed chaotic solutions of
non-linear di�erential equations.� Tellus A: Dynamic Meteorology and
Oceanography 61.4 (2008).

D
ra
ft

7/14

JJ
II
J
I

Back

Close

Computing the Taylor coe�cients (the normalized derivatives)

We denote the normalized derivatives (the i− th derivative divided by
i!) with xi, yi, zi, Xi, Yi, Zi for i = 0, ..., N − 1. From equation
(1) we have

x1 = a(y0 − x0)

y1 = rsx0 − y0 − x0z0 − εsX0Y0

z1 = x0y0 − bz0
X1 = ca(Y0 −X0)

Y1 = c(rfX0 − Y0 −X0Z0)− εfX0y0

Z1 = c(X0Y0 − bZ0).

By applying Leibniz rule we obtain the following procedure for computing
xi, yi, zi, Xi, Yi, Zi for i = 0, ..., N − 1. The procedure is actually
the so called automatic di�erentiation, or sometimes called algorithmic
di�erentiation.

D
ra
ft

8/14

JJ
II
J
I

Back

Close

Computing the Taylor coe�cients (the normalized derivatives)

The procedure: for i = 0, ..., N − 1 compute:

xi+1 =
1

i+ 1
a(yi − xi)

yi+1 =
1

i+ 1
(rsxi − yi −

i∑
j=0

xi−jzj − εs
i∑

j=0

Xi−jYj)

zi+1 =
1

i+ 1
(

i∑
j=0

xi−jyj − bzi)

Xi+1 =
1

i+ 1
ca(Yi −Xi)

Yi+1 =
1

i+ 1
(c(rfXi − Yi −

i∑
j=0

Xi−jZj) + εf

i∑
j=0

Xi−jyj)

Zi+1 =
1

i+ 1
c(

i∑
j=0

Xi−jYj − bZi).

(2)

D
ra
ft

9/14

JJ
II
J
I

Back

Close

Pseudocode of Taylor series method for coupled Lorenz system

 while (time < T)
 {
 // Computing derivatives
 // N -order of the method
 for (i = 0; i<N; i++)
 {
 s1=s2=s3=s4=s5=0.0;
 for (j=0; j<=i; j++)
 {
 s1+=x[i-j]*z[j];
 s2+=x[i-j]*y[j];
 s3+=X[i-j]*Y[j];
 s4+=X[i-j]*Z[j];
 s5+=X[i-j]*y[j];
 }

 // Computing x[i+1],y[i+1],z[i+1],
 // X[i+1],Y[i+1],Z[i+1] from formulas (2)
 // by using s1,s2,s3,s4,s5

 }

 //Computing the optimal stepsize tau
 //from N-th and N-1-th derivatives

 // One step forward with Horner's rule
 // for the new x[0],y[0],z[0],
 // X[0],Y[0],Z[0]

 time+=tau;
 }

D
ra
ft

10/14

JJ
II
J
I

Back

Close

Why OpenMP parallel technology?

OpenMP has its own importance for the above algorithm, because:

1. OpenMP is simpler than MPI, since the communication between
threads is realized by shared memory and we do not need to learn special
libraries for packaging and unpackaging of multiple precision numbers.

2. OpenMP is slightly faster than pure MPI.

3. OpenMP uses less memory, since the algorithm does not allow
domain decomposition and the computational domain has to be multiplied
by the number of processes, when MPI is used.

D
ra
ft

11/14

JJ
II
J
I

Back

Close

The sketch of OpenMP code in terms of GMP library

 #pragma omp parallel private(i,j,tid)
 {
 tid = omp_get_thread_num();
 for (i = 0; i<N; i++) //N - the order of the method
 {
 # pragma omp for schedule(static)
 for (j=0; j<=i; j++)
 {
 mpf_mul(tempv[pad*tid],x[i-j],z[j]);
 mpf_add(sum[pad*tid],sum[pad*tid],tempv[pad*tid]);
 ..
 // The same computations for the other 4 sums
 }
 // Explicit tree based parallel Reduction
 ..
 #pragma omp sections
 {
 // Computing x[i+1],y[i+1],z[i+1],X[i+1],Y[i+1],Z[i+1]
 // independently in 6 parallel sections
 }
 ...
 // Setting elements of the array "sum" to zero
 }
 #pragma omp single
 {
 //Computing the variable stepsize
 }
 #pragma omp sections
 {
 // One step forward with the Horner's rule
 // independently for each 6 components
 }
 }

D
ra
ft

12/14

JJ
II
J
I

Back

Close

Numerical and performance results

The preparation of the parallel program and the many tests are performed
in the HybriLIT Platform at MLIT, JINR and in the Nestum Cluster,
So�a, Bulgaria.
• Following Shijun Liao we �rst computed a priori estimations for the

needed order of the method and the needed precision and then computed
a reference solution in the rather long time interval [0, 400]. We took
as initial conditions those from paper [2] in order to compare with the
benchmark table up to time=100.
• We performed two large computations, each using one CPU-node

(32 cores) in Nestum cluster. One computation with decimal digits of
precision K=2158 and N=2480. And second computation for veri�cation
with K=2254 and N=2580.
• The needed time for the second (larger) computation using one

node (32 cores) in Nestum cluster is 6.3 days. The parallel speedup
when using these 32 cores is 23.1 with parallel e�ciency 72.1%.
[2]Wang, P. et al. (2014). Clean numerical simulation for some chaotic

systems using the parallel multiple-precision Taylor scheme. Chinese
science bulletin, 59(33), 4465-4472

D
ra
ft

13/14

JJ
II
J
I

Back

Close

Numerical and performance results

397 398 399 400
time t

-20

0

20

40

slow dynamics

397 398 399 400
time t

-40

0

40

80

fast dynamics

.

.

X,
Y,
Z

x,
y,
z

D
ra
ft

14/14

JJ
II
J
I

Back

Close

ACKNOWLEDGEMENTS

We thank the Meshcheryakov Laboratory of Information Technologies
of JINR, Dubna, Russia and the HybriLIT team, for the opportunity
to use the computational resources of the HybriLIT Platform. We also
appreciate the opportunity to use the computational resources of the
Nestum cluster, So�a, Bulgaria.

The work is supported by a grant of the Plenipotentiary Representative
of the Republic of Bulgaria at JINR, Dubna, Russia.

THANK YOU FOR YOUR ATTENTION!

