
HPC workload balancing algorithm for
co-scheduling environments.

R. Kuchumov, V. Korkhov

/ 10Ruslan Kuchumov

HPC job schedulers

1. HPC schedulers assign tasks from the queue to computing
nodes
a. The whole node may be assigned to a single job, or
b. Nodes are divided into slots and jobs are distributed among

them
c. Only one job can claim a node or a slot

2. There are multiple resources in a node that can be used by a
job

3. Jobs rarely fully utilize all of them

#2

/ 10Ruslan Kuchumov

HPC job schedulers

1. Underutilized resources lead to
a. An increase of queue wait time
b. Increase of the cost of computations (e.g. in clouds)

2. Jobs with different resource demands (e.g, cpu-, network- and
gpu-intensive) can potentially be scheduled on the same node

3. Computational resource oversubscription is not a common
practice

#3

/ 10Ruslan Kuchumov

Problems in co-scheduling

1. Jobs may compete for the same shared resources, fair resource
allocation is not always possible

2. Resource requirements have to be formalized for making
decisions on co-scheduling
a. They should be measurable in practice
b. They should not depend on the state of the scheduler
c. Dependencies between resource usage rates should be

represented

#4

/ 10Ruslan Kuchumov

Assumptions about applications resources usage

We have limited our scope to iterative HPC applications, and that the following
statements are valid:

1. Application consists of multiple low-resolution stages, where resource throughputs
are periodic or constant

a. Stationary problem definition is considered for simplicity, dynamic problem is a future work

2. During a single stage the amount of consumed resource does not change regardless
of the available bandwidth

a. Applications does not wait actively on resources (i.e. no user-level polling, e.g. no spin-locks)

#5

/ 10Ruslan Kuchumov

Measuring application processing speed

Application processing speed should be:

● invariant of available resources and runtime
environment (cpu time, clock freq., memory
bus BW, etc)

● measurable in runtime with low overhead

Speed = IPC * cputime_fraction:

Correlates with experimental data on NPB and
Parsec benchmarks in different environments

6

/ 10Ruslan Kuchumov

Optimal strategy for minimizing makespan

● Makespan optimization problem can be reduced to linear programming problem:

● a
i,j

 -- acceleration of task T
i
 in combination S

j
● b

i
 -- total amount of required work to complete task T

i
● x

j
 -- processing time of combination S

j
● Optimal schedule can be recovered from LP solution x

7

/ 10Ruslan Kuchumov

Optimal strategy for minimizing makespan

● Matrix A has exponential number of columns (2n)
○ Additional tasks information and “tricks” can be used to reduce it

● Optimal solution can only be found when all its parameters (A,b) are known or
estimated

● Still can be useful in practice in an interval form (when A
min

 < A < A
max

)
● Can be used as a reference for comparing (numerically and analytically) other

strategies and objective functions

8

● a
i,j

 -- acceleration of task T
i
 in combination S

j
● b

i
 -- total amount of required work to complete task T

i
● x

j
 -- processing time of combination S

j

/ 10Ruslan Kuchumov

Practical results from the optimal strategy

We used LP problem to

1. Derive criteria for choosing “naive” strategy of running all jobs in parallel based only
on the value of acceleration of max. combination and its size,

2. Showed that optimizing total combination speed at every time point worsens
makespan at most by 2 times.

The later result allows to substitute solution of LP problem with heuristic strategy of
choosing combination with maximum acceleration sum. Resulting makespan will be
worse by at most 2 times compared to the optimal value.

9

/ 10Ruslan Kuchumov

Real-time balancing algorithm

Based on the heuristic strategy, we implemented
global-optimization (Bayesian optimization) algorithm
for selecting applications for parallel execution.

Implementation uses Cgroup Freezer to preempt
running applications. Linux Perf and ProcFS data is used
to measure application processing speed in real-time.

Implementation showed it was possible to reduce
makespan of a schedule 1.5-2 times (rel. to sequential
execution), by allowing 1.5 slowdown of each
application.

10

/ 10Ruslan Kuchumov

Future work

11

● Solving the scheduling problem with tasks
precedence constraints (task graph).

● Modeling bandwidth vs. throughput
dependency

○ By how much can we limit bandwidth without
exceeding slowdown threshold?

○ How to control resources BW to affect processing
speed and overall schedule performance

● Analysis of historical data to estimate initial
conditions

Thank you for attention!

