
Resource Management in Private Multi-Service
Cloud Environments

Joint Institute for Nuclear Research

Nikita Balashov*, Nikolay Kutovskiy, Nikita Tsegelnik

9 July 2021

The 9th International Conference "Distributed Computing and Grid Technologies in Science and Education"
(GRID'2021)

2

JINR Cloud Overview

 JINR Cloud is based on OpenNebula:

– Implements Infrastructure-as-a-Service model

– Provides personal virtual machines (VM) to individual
researchers

– Hosts a number of multi-user systems and provides them
as cloud services

 Cloud services:

– GitLab/GitLab CI (in operation)

– HTCondor cluster (in operation, restricted to neutrino
experiments)

– JupyterHub (under construction)

 Two types of cloud resources:

– Shared (in common use by all JINR participants)

– Neutrino platform resources: owned and partially shared by
the Baikal-GVD, NOvA, DUNE and JUNO

3

Background and Motivation

 Resources are sometimes underutilized

– Interactive machines are rarely used at night

– Batch job rates of certain projects may be
irregular and have long periods of inactivity

 System efficiency can be defined in different
ways

– With batch systems we normally aim at
maximizing hardware utilization

– In case of interactive systems (e.g.
JupyterHub) we want to keep the system
responsive

 Resource owners may want to:

– share their resources with other
experiments/research groups

– redistribute resources between cloud
services

Typical interactive machine usage

Batch jobs rate

4

Cooperative Resource Sharing

 Facilitate cooperation in resource sharing

 Resource manager operates resource distribution on
behalf of resource owners:

– Scales available cloud services

– Creates lease requests to other resource owners

– Approves lease requests from other resource owners

 Users can monitor current resource distribution and
usage

 Meta-scheduler handles cloud services scaling

5

Scaling Cloud Services

 Many services can be scaled horizontally, but it may be
tricky

 Different services (or their different parts) can be scaled for
different reasons

 We need a tool to perform centralized scaling in two
modes:

– Automatic – based on service usage metrics

– Manual – based on resource manager requests

 Simple visual interface for resource managers

Job submission rate

Responsiveness

Throughput

66

Meta-Scheduler Prototype

 Evaluate possible technical solutions

 Try to discover potential pitfalls

 Refine system requirements

 Automatic scaling of HTCondor worker-nodes based
on job queue size

 Test out microservices approach

77

Current Results and Plans

Thanks!

 We developed a scheduler with a simple strategy for scaling HTCondor worker nodes
automatically

 The prototype was tested in a sandbox environment

 After testing it in the production environment, we’ll start working towards a more generic
solution for automatic scaling of other services

 So far, we plan at supporting at least 3 services: HTCondor, GitLab/CI and JupyterHub

 Develop a system for resource lease requests/approvals

 Develop a web-interface for end-users (most likely based on Django)

Nikita Balashov, balashov@jinr.ru

	Страница 1
	Страница 2
	Страница 3
	Страница 4
	Страница 5
	Страница 6
	Страница 7

