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HENP experiments are preparing for HL-LHC era, which will bring an unprecedented volume 
of scientific data. This data will need to be stored and processed by collaborations, but 
expected resources growth is nowhere near extrapolated requirements of existing models 
both in storage volume and compute power.

=> Computing models need to evolve.

This evolution includes multiple aspects:

● Optimized data processing, squeezing the maximum from available CPU/GPGPU/FPGA 
resources

● Optimized data storage, reduction of the number of copies, different data access 
methods, full utilization of network resources

● Cost optimizations, no high-end expensive RAID setups, no underutilized CPUs on 
storage servers, no HDDs with 90% free space on the worker nodes

● Deployment optimizations, scalability and containerization with on-demand expansion into 
the cloud (both community and commercial)

● Operational cost optimization, more standardized solutions, lower requirements on unique 
Grid expertise
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Background
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Why are we doing it?
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From Simone Campana’s talk on Tuesday
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Russian Data Lake Prototype Map
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● Resources
○ Bare-metal at JINR and MEPhI
○ Virtualized at PNPI and PRUE

● Storage systems
○ EOS
○ dCache
○ XCache

● Payloads configuration, submission and testing
○ Custom synthetic tests
○ PanDA and ProdSys2 (ATLAS)
○ HammerCloud
○ CRIC (former AGIS)

● Monitoring infrastructure
○ perfSONAR
○ Logstash
○ ElasticSearch
○ Kibana
○ Custom web apps
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Russian Data Lake Prototype Building Blocks
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dCache
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● A custom web application for HammerCloud monitoring (to get round Kibana limitations)
● Job selection by a rich spectrum of criterias

Custom monitoring and analytics
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1. Cache on a dedicated server (XCache)
2. Distributed cache on the worker nodes (XCache)
3. Buffer on a dedicated server (EOS)
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Data caching and buffering



Total time of tests with dedicated XCache vs distributed XCache
Difference is within the margin of error

Distributed XCache

Dedicated XCache

Caching for read-oriented workloads
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Buffering for write-oriented workloads
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Total time of tests with direct write vs buffered write
Using EOS LRU

Buffer μ=11,8 σ=1,2

Direct μ=21,8 σ=0,7
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Conclusions
● We have advanced in building a Russian Data Lake prototype using 

existing network infrastructure and production-grade resources

● We have deployed an extensive monitoring infrastructure that allows 
us to gather most of the necessary metrics

● We have conducted various types of tests on our way to measure the 
impact of caching and buffering on improving CPU efficiency

○ This is a work in progress, we have plans on expanding our tests 
to other real-life workloads

● We are working on extending our prototype to more Russian sites, but 
decent network connectivity remains a crucial requirement
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Thank you!
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Backup



In order to save CPU time we need to offload files to the remote storage in the 
background, and we’ve found a way to achieve this using built-in EOS features:
● We create a special directory in the global namespace
● Default placement policy for this directory is to store all files on the site-local 

pool
● EOS will pick up new files created in this directory and change their 

placement policy to a new one
● New placement policy will force fIles to migrate to the remote pool

This way we offload all remote writes to the storage engine and free up CPU time 
on the worker nodes

Write-oriented payloads: Buffering
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With our synthetic tests we’ve achieved up to 1.8x speedup
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Read-oriented payloads: Caching
There’s no one-size-fits-all solution because of hardware (especially network 
throughput and configuration) differences on different sites. We were considering 
three pretty obvious scenarios:
1. A single dedicated cache server (poor external network, good internal)
2. A local isolated cache on every worker node (good external network, poor 

internal) – this scenario was dropped almost immediately
3. A shared cache between worker nodes (external and internal networks of the 

same quality) – requires some sort of service discovery
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With our synthetic tests we’ve achieved up to 2.4x speedup
With real-life ATLAS workloads we’ve achieved a 1.2x speedup


