
Russian Data Lake Prototype as an Approach Towards 
National Federated Storage for Megascience

Aleksandr Alekseev, Andrey Kiryanov, Alexei Klimentov, Tatiana Korchuganova, 
Valery Mitsyn, Danila Oleynik, Sergey Smirnov, Andrey Zarochentsev



HENP experiments are preparing for HL-LHC era, which will bring an unprecedented volume 
of scientific data. This data will need to be stored and processed by collaborations, but 
expected resources growth is nowhere near extrapolated requirements of existing models 
both in storage volume and compute power.

=> Computing models need to evolve.

This evolution includes multiple aspects:

● Optimized data processing, squeezing the maximum from available CPU/GPGPU/FPGA 
resources

● Optimized data storage, reduction of the number of copies, different data access 
methods, full utilization of network resources

● Cost optimizations, no high-end expensive RAID setups, no underutilized CPUs on 
storage servers, no HDDs with 90% free space on the worker nodes

● Deployment optimizations, scalability and containerization with on-demand expansion into 
the cloud (both community and commercial)

● Operational cost optimization, more standardized solutions, lower requirements on unique 
Grid expertise

2

Background

Russian Data Lake Prototype, GRID’2021, Dubna, July 5-9.



3

Why are we doing it?

Russian Data Lake Prototype, GRID’2021, Dubna, July 5-9.

From Simone Campana’s talk on Tuesday



Data Lake with CPU-oriented smaller sites

Reliable Storage
+ Orchestrator

Large National 
Computing Center

National Data Lake
with a common namespace

Local Pool

Local Pool
Local Pool

Local Pool

T3 Level 
Center

Unpledged 
Computing 
Resource

T2 Level 
Center

University 
Cluster

4Russian Data Lake Prototype, GRID’2021, Dubna, July 5-9.



5

Russian Data Lake Prototype Map
45

 k
m

637 km

114 km~800 km of cables 
from PNPI to JINR

~8 ms latency

10 Gbps

PNPI

JINR

PRUE

MEPhI
Russian Data Lake Prototype, GRID’2021, Dubna, July 5-9.



● Resources
○ Bare-metal at JINR and MEPhI
○ Virtualized at PNPI and PRUE

● Storage systems
○ EOS
○ dCache
○ XCache

● Payloads configuration, submission and testing
○ Custom synthetic tests
○ PanDA and ProdSys2 (ATLAS)
○ HammerCloud
○ CRIC (former AGIS)

● Monitoring infrastructure
○ perfSONAR
○ Logstash
○ ElasticSearch
○ Kibana
○ Custom web apps

6

Russian Data Lake Prototype Building Blocks

Russian Data Lake Prototype, GRID’2021, Dubna, July 5-9.



Billing 

BigPanDA 
monitoring

Accounting 

Logstash ElasticSearch 
cluster

Kibana

Xrootd monitoring Billing monitoring

Job monitoring

Accounting monitoringCustom monitoring and analytics

7

dCache

Russian Data Lake Prototype Monitoring

Xrootd
logs

Filebeat

JD
B

C

ARC CE

Russian Data Lake Prototype, GRID’2021, Dubna, July 5-9.



● A custom web application for HammerCloud monitoring (to get round Kibana limitations)
● Job selection by a rich spectrum of criterias

Custom monitoring and analytics

8Russian Data Lake Prototype, GRID’2021, Dubna, July 5-9.



1. Cache on a dedicated server (XCache)
2. Distributed cache on the worker nodes (XCache)
3. Buffer on a dedicated server (EOS)

SE WN
WN

WN
WN

C
ac

he

1

SE WNCache
WNCache

WNCache
WNCache

2

SE WN
WN

WN
WN

B
uf

fe
r

3

Russian Data Lake Prototype, GRID’2021, Dubna, July 5-9. 9

Data caching and buffering



Total time of tests with dedicated XCache vs distributed XCache
Difference is within the margin of error

Distributed XCache

Dedicated XCache

Caching for read-oriented workloads

Russian Data Lake Prototype, GRID’2021, Dubna, July 5-9. 10



Buffering for write-oriented workloads

Russian Data Lake Prototype, GRID’2021, Dubna, July 5-9. 11

Total time of tests with direct write vs buffered write
Using EOS LRU

Buffer μ=11,8 σ=1,2

Direct μ=21,8 σ=0,7

Total time, s

N
um

be
r o

f t
es

ts



Conclusions
● We have advanced in building a Russian Data Lake prototype using 

existing network infrastructure and production-grade resources

● We have deployed an extensive monitoring infrastructure that allows 
us to gather most of the necessary metrics

● We have conducted various types of tests on our way to measure the 
impact of caching and buffering on improving CPU efficiency

○ This is a work in progress, we have plans on expanding our tests 
to other real-life workloads

● We are working on extending our prototype to more Russian sites, but 
decent network connectivity remains a crucial requirement

Russian Data Lake Prototype, GRID’2021, Dubna, July 5-9. 12

Acknowledgements:

This work was funded in part by the Russian Science Foundation under contract No.19-71-30008 (research is conducted in 
Plekhanov Russian University of Economics)



13

Thank you!

Russian Data Lake Prototype, GRID’2021, Dubna, July 5-9.



Backup



In order to save CPU time we need to offload files to the remote storage in the 
background, and we’ve found a way to achieve this using built-in EOS features:
● We create a special directory in the global namespace
● Default placement policy for this directory is to store all files on the site-local 

pool
● EOS will pick up new files created in this directory and change their 

placement policy to a new one
● New placement policy will force fIles to migrate to the remote pool

This way we offload all remote writes to the storage engine and free up CPU time 
on the worker nodes

Write-oriented payloads: Buffering

15

With our synthetic tests we’ve achieved up to 1.8x speedup

SE WN
WN

WN
WN

B
uf

fe
r



Read-oriented payloads: Caching
There’s no one-size-fits-all solution because of hardware (especially network 
throughput and configuration) differences on different sites. We were considering 
three pretty obvious scenarios:
1. A single dedicated cache server (poor external network, good internal)
2. A local isolated cache on every worker node (good external network, poor 

internal) – this scenario was dropped almost immediately
3. A shared cache between worker nodes (external and internal networks of the 

same quality) – requires some sort of service discovery

16

SE WN
WN

WN
WN

C
ac

he

1

SE WNCache
WNCache

WNCache
WNCache

2

SE WNCache
WNCache

WNCache
WNCache

3

With our synthetic tests we’ve achieved up to 2.4x speedup
With real-life ATLAS workloads we’ve achieved a 1.2x speedup


