9th International Conference "Distributed Computing and Grid Technologies in Science and Education" (GRID'2021), July 5-9, 2021, Dubna, Russia

Development of the Event Metadata System for the NICA experiments

Peter Klimai ^{1,2}, Evgeny Alexandrov ³, Igor Alexandrov ³, Artyom Degtyarev ^{2, 4}, Irina Filozova ³, Konstantin Gertsenberger ³, Alexander Yakovlev ³ ¹ Institute for Nuclear Research of RAS, Moscow, Russia ² JetBrains Research

³ Joint Institute for Nuclear Research, Dubna, Russia

⁴ Moscow Institute of Physics and Technology, Nuclear Physics Methods Lab

Nuclotron-based Ion Collider fAcility (NICA)

- NICA aim is to study hot and dense strongly interacting matter in heavy ion collisions at center-of-mass energies up to 11GeV / nucleon
- Fixed target (BM@N, since 2015)
- Collider (MPD, SPD)

Data Storage and Processing

- BM@N data storage and processing pipeline is shown
- Physics analysis is typically performed for a subset of events satisfying given criteria
- To avoid full scan of all collected data, an Event Metadata System is required

8 July 2021

Event Metadata System Goals

- Indexing of all reconstructed events stored in ROOT DST files
- Storing necessary event metadata, such as:
 - Number of primary and all reconstructed tracks
 - Track number of +/- charged particles
 - Primary and secondary particles found
 - Number of hits by detectors
 - Total input and output charge in the event
 - Software version
 - Reference to the storage location
- Flexibly tune per experiment (BM@N, BM@N SRC, MPD, SPD)
- Convenient access to metadata (Web, REST API, C++)
- Search for required set of events
- Provide statistics and check the quality of the catalogue of physics events

8 July 2021

Event Metadata System Requirements

- Scalability
 - Today for BM@N: overall ~500M events
 - Future (all NICA experiments): several Billion events per year
- Performance
 - Not too many RPS, but heavy ones
- Availability and fail safety
- Role-based access
 - Event Consumer, Index Writer, Index Administrator
- Interaction with other systems
 - Run metadata is stored in Condition database
 - FairRoot-based frameworks (BmnRoot, etc.)

EMD System Architecture

8 July 2021

EMD Database Choice

- Existing SQL vs. Existing NoSQL vs. Custom
- Horizontal vs. Vertical scaling
- Ease of maintenance
- Hardware cost
- Other experiment's experience
 - No single "best" solution

ATLAS Event Index architecture example (from: E. Cherepanova et al, "The ATLAS EventIndex using the HBase/Phoenix storage solution", talk at this conference)

DBMS Choice – PostgreSQL test

8 July 2021

DBMS Choice - PostgreSQL test (contd.)

HW Config 2: Intel Core i9-10900F 2.80GHz (20 CPU cores), 64 GB RAM, 1TB NVMe SSD disk, CentOS Linux 8.2, PostgreSQL 12.5

<- Example test result for 500M events

<u>SELECT 1: PERIOD_NUMBER=6 AND SOFTWARE_ID=0 AND PRIMARY_TRACKS > 5;</u>

<u>Select 2</u>: *period_number*=6 AND *software_id*=2 AND *primary_vertex* = false AND *detector_hit*[bits:0-5]; <u>Select 3</u>: *period_number*=5 AND *run_number* > 100 AND *primary_vertex* = true AND *particles*[bits:5-9] > 4; <u>Select 4</u>: *period_number*=4 AND *software_id*=1 AND *primary_tracks*>6 and *all_tracks*>40 AND *particles*[bits:10-14].

8 July 2021

DBMS Choice – NoSQL

- Cassandra test
 - Response time same order of magnitude was achieved (same hw)
 - Tables must be built per query to efficiently process different requests
- Other options under consideration
 - HBASE (with Phoenix)
 - DAOS

^-- Results using HW Config 2 with primary key:
((PERIOD_NUMBER, SOFTWARE_ID), PRIMARY_TRACKS, EVENT_NUMBER)
((partition key), clustering columns)

8 July 2021

Database Schema Examples

8 July 2021

REST API and Web UI Implementation

- Using Kotlin programming language
 - JVM runtime
 - ktor framework for Web UI and API
 - JDBC for Database connectivity
 - Jackson for (de)serialization
 - Kotlinx.html
- Packed in Docker
- Configuration file provided in YAML
- Auto provisioning (WIP)

Configuration File Example

event_db: # condition_db - similar host: *** port: *** db_name: *** user: *** password: ***

title: "Event Index Main Page"

pages:

- name: "BM@N Events"
 api_url: "/event_api/v1/bmn"
 web_url: "/event_web/bmn"
 db_table_name: "bmn_event"
 parameters:
 - name: track_number
 type: int
 intervals: true
 web_name: "Total track number"

[...]

- name: "BM@N SRC Events"
 api_url: "/event_api/v1/src"
 web_url: "/event_web/src"
 db_table_name: "src_event"
 parameters:
 - name: track_number type: int intervals: true web_name: "Total track number"
 name: input_charge type: float intervals: true web_name: "Input charge"
 name: output_charge
 - name: output_charge
 type: float
 intervals: true
 web_name: "Output charge"

-2ª

8 July 2021

[...]

Web UI Main Page (Test Prototype)

Event Index Main Page

BM@N Events

REST API

API - get all events

WebUI

Search Form

BM@N SRC Events

REST API

API - get all events

WebUI

Search Form

Auxiliary data

Dictionaries

Web UI View (Test Prototype)

BM@N Events

Enter search criteria for events

BM@N SRC Events

Enter search criteria for events

Period Number 7 Run Number 5000-5100 Software Version 19.1 ~
Beam Particle] Target Particle] Energy, GeV]
Total track number 15-20 Input charge

Period Number Selection based on standard parameters Run Number Software Version No selection > Software Version No selection > Preselection based on Condition DB Beam Particle AI Condition DB Integry, GeV 2.2-2.8 Total track number 20-23 Submit Selection based on configured parameters

Events found:

storage_name	file_path	event_number	software_version	period_number	run_number	track_number
data1	/tmp/file1	100	19.1	7	5000	20
data1	/tmp/file1	101	19.1	7	5000	20
data1	/tmp/file1	102	19.1	7	5000	21

storage_name	file_path	event_number	software_version	period_number	run_number	track_number	input_charge	output_charge
data1	/tmp/file1	1	19.1	7	5000	15	2.0	3.0

8 July 2021

Events found:

API Details

- HTTP API using JSON formatting
- HTTP POST to create events in the catalog
- HTTP GET to obtain event records
 - Same filtering criteria as Web UI, including range support, e.g.

```
- events: [
    - {
        - reference: {
              storage_name: "data1",
              file path: "/tmp/file1",
              event number: 1
          Ъ.
          software version: "19.1",
          period number: 7,
          run number: 5000,
        - parameters: {
              track number: 20
      },
        - reference: {
              storage name: "data1",
              file_path: "/tmp/file1",
              event_number: 2
```

/event_api/v1/bmn/events?period_number=7&run_number=5000+&
 software_version=19.1&track_number=10-15

Current Status

- Completed
 - Architecture
 - DBMS Selection
 - Condition Database integration
 - REST API and Web UI Prototype
- WIP (scheduled to complete end of 2021)
 - Experiment framework integration (FairRoot based)
 - Monitoring (Telegraf, InfluxDB, Grafana)
 - HA and Backup
 - Automated Deployment (Ansible, Docker)

The work was funded by the Russian Foundation for Basic Research (RFBR) grant according to the research project №18-02-40125.

THANK YOU!

8 July 2021