9th International Conference "Distributed Computing and Grid Technologies in Science and Education" (GRID'2021), 5-9 July 2021

Research Cloud Computing Ecosystem in Armenia

H. Astsatryan, W. Narsisian, <u>A. Mirzoyan</u>, V. Sahakyan

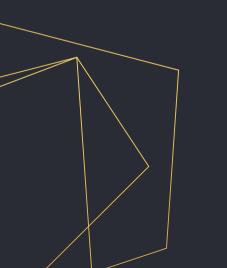
Institute for Informatics and Automation Problems of the National Academy of Sciences of the Republic of Armenia

TABLE OF CONTENTS

1. OVERVIEW

4 DOMAIN SPECIFIC SERVICES

2. IAAS CLOUD


5. FUTURE ACTIVITIES

3. COMMUNITIES

1. OVERVIEW - HISTORY

 \mathbf{O}

DISTRIBUTED SYSTEM

2001

Network-based concurrent computing environment

 \bigcirc

GRID INFRASTRUCTURE

 \mathbf{O}

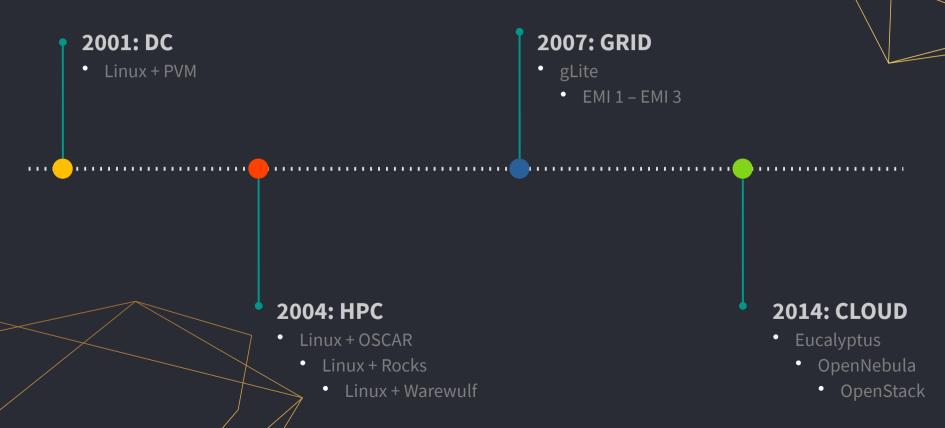
Nation-wide Grid infrastructure.

2007

<u>H. Astsatryan</u>, V. Sahakyan, Yu. Shoukourian, J. Dongarra, P.H. Cros, M. Dayde, P. Oster, Strengthening compute and data intensive capacities of Armenia, IEEE RoEduNet, 2015.

2004

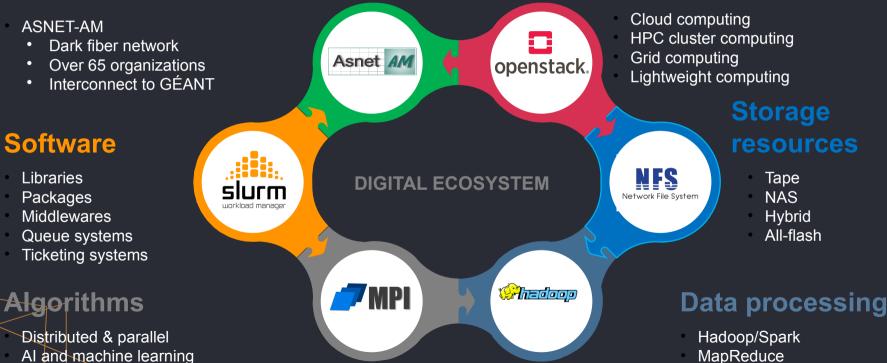
ARMCLUSTER HPC


A centralized HPC system

CLOUD IaaS Cloud infrastructure in BSEC region and

Armenia

2014


1. OVERVIEW - SOFTWARE

1. OVERVIEW - VISION

High-speed network

Computing resources

Data analytics

Archieving

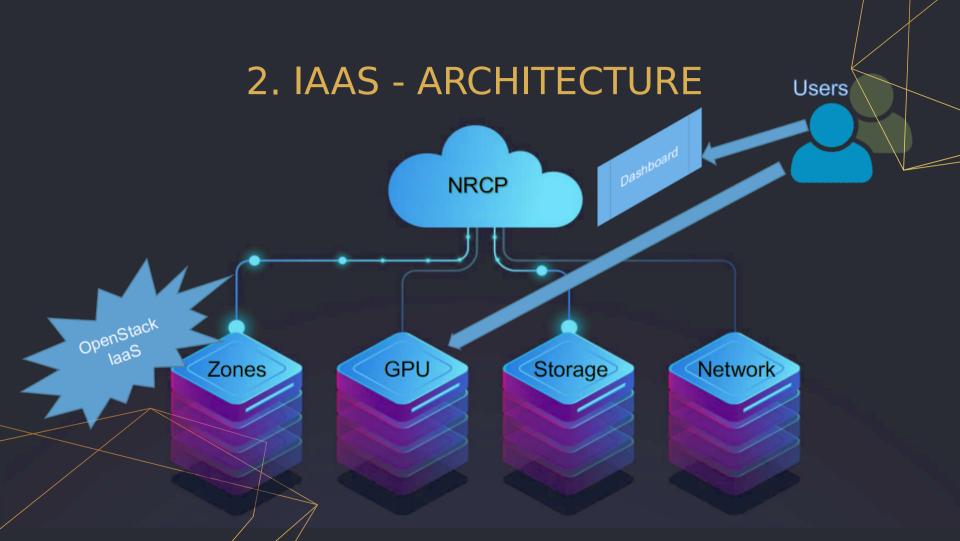
1. OVERVIEW - SERVICES

01 INFRASTRUCTURE

- 1. Internet and GEANT access
- 2. laaS Cloud (1-64 cores per VM), cloud.asnet.am
- 3. Al cloud on GPUs, cloud.asnet.am
- 4. Container cloud, cloud.asnet.am

5. DNS, Hosting

02 COLLABORATIVE


- 1. eduroam, eduroam.am
- 2. Distance learning, meet.asnet.am
- 3. Mail system, mail.asnet.am
- 4. Cloud storage, nextcloud.asnet.am
- 5. Music without border, Lola

03 DOMAIN SPECIFIC

- 1. Data preservation, noad.sci.am
- 2. Earth Observation, datacube.sci.am
- 3. Repositories & mirroring, mirrors.asnet.am
- 4. SaaS and Jupyter notebooks

laaS Cloud Infrastructure

2. IAAS – COMPUTATIONAL RESOURCES

Server type	Quantity	CPU/GPU model	Serv	Total		
			CPU/GPUs	Cores	RAM (GB)	cores
Thin	4	Intel Xeon E5-2630 v4	2	20	256	80
Fat	2	Intel Xeon Gold 6138	4	80	512	160
Accelerated	2	Intel Core i9-10900KF	1	10	128	20
	2	Intel Xeon E5-2680 v3	2	24	128	48
		Intel Xeon Phi 7120P	2	122		244
	2	Intel Xeon Gold 5218	2	32	192	64
		Nvidia V100 32GB	2	10240		20480
				1	Total (cores)	21096

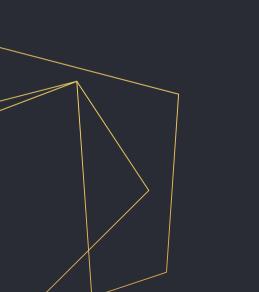
2. IAAS – FLAVOURS

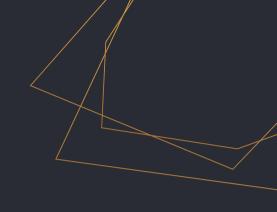
Label	Туре	Description
General Simulations	small-1 small-2 M1, M2 Practical-1,Practical-2	These flavors mainly used for general simulations and tasks where there is no need for big number of resources (CPU, RAM)
HPC	HPC1-6	Optimized flavors with big number of CPUs and Memory mainly used for HPC tasks
Domain Specific	Large1-4	Powerful virtual machines for specific domains where the simulation needs to be run for several days

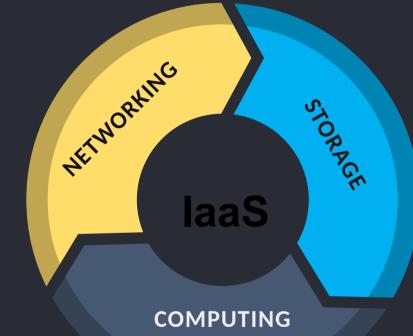
2. IAAS – STORAGE RESOURCES

Brand	Model	Туре	Quantity	Raw capacity (TB)	Total capacity (TB)
HPE	MSA 2052	All-flash	2	8	16
NetApp	E2824	Hybrid	1	12	12
NetApp	E5760	Hybrid	2	720	1440
QNAP	TS-809U-RP	NAS	1	12	12
Supermicro	JBOD Enclosure	NAS	1	40	40
HPE	MSL 2024	Tape (cold)	1	100	100
				Total (TB)	1620

2. IAAS - FILE SYSTEMS







3. COMMUNITIES -OVERVIEW

Zone1

Earth science Digitization and cultural heritage

> Zone2 Life science

Zone3

Physics Distance learning

3. COMMUNITIES -BENEFICIARIES

NAS RA

- Supporting the multiwavelength monitoring of the bright Blazars (Relativistic Astrophysics Network)
- Monitoring the environment with Earth observation in Armenia (CENS)
- Empowering the Armenian Genome project with HPC resources (MolBio)
- Adsorption features of some molecules on metal surfaces (ISEC)
- Whole-genome-based phylogeny of ASF viruses (Molbio, IIAP)
- Boosting laser physics and quantum computing simulations (IPR)
- Preserving the past for the future for the Armenian cultural heritage: TIME MACHINE (ELIB)
 - Armenian Virtual Observatory (BAO)

Academia Universities

Stakeholders Industry

Ministries

Supporting weather 'nowcasting' to prevent damage in Armenia (Ministry of Environment)

Universities

- Enabling computational materials discovery and atomic scale simulations (YSU)
- Estimation of metastable states of proteins with HPC resources for drug design (Slavonic)

Industry

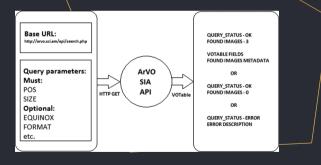
Supporting research and development on RINA, an emerging network architecture (RINA)

DOMAIN SPECIFIC SERVICES

4. SERVICES - ASTROPHYSICS

DATA DISCOVERY AND CROSS-CORRELATION SERVICES

Cross-correlation algorithm to correlate the astronomical catalogs

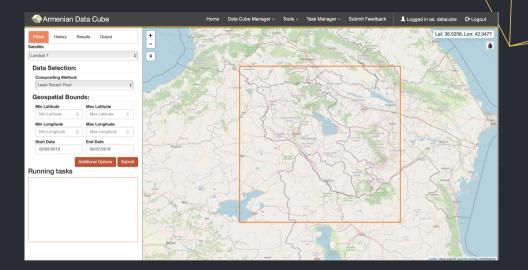

Cross-correlation page

Please upload catalogs to correlate those with each other or with available on the server catalogs. You must read <u>requirements for uploaded catalogs</u> before starting a correlation.

			Browse	0			Browse
IF	RAS/PSC	•		۲	IRAS/FSC	-	
			By RMS - 30 sigma	By	Radius (arcsec)	10.0	
			• By RMS - 3.0 sigma	© By	Radius (arcsec)	10.0	

Method and API

to discover access, and retrieve multidimensional images

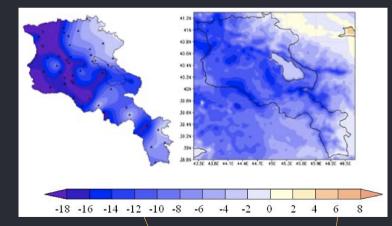


A. Knyazyan, <u>H. Astsatryan</u>, A. Mickaelian. Armenian virtual observatory simple image access service. Elsevier Astronomy and computing, vol. 19, 2017. <u>H. Astsatryan</u>, A. Knyazyan, A. Mickaelian, Computational Astrophysics Towards Exascale Computing and Big Data. ASPC, vol. 505, pages 220-225, 2016.

4. SERVICES – EARTH OBSERVATION

Armenian Data Cube

High-resolution disaster detection and monitoring of environmental changes from Landsat and Sentinel imagery analysis-ready data


H. Astsatryan, H. Grigoryan, A. Poghosyan, R. Abrahamyan, Sh. Asmaryan, V. Muradyan, G. Tepanosyan, Y. Guigoz, G. Giuliani, Air temperature forecasting using artificial neural network for Ararat valley, Springer Earth Science Informatics, vol 14, no. 2, pp. 711-722, DOI: 10.1007/s12145-021-00583-9, 2021.

4. SERVICES – CLIMATE & WEATHER FORECAST

Higher resolution and precise climate change and environmental forecasting combining complex digital model's accuracy through mathematical modelling and simulations in addition to real-world observations and measurement data

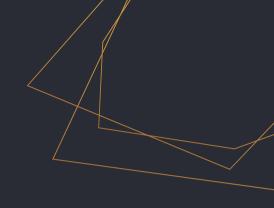
Service to improve the weather forecast

uses different weather prediction models (like WRF-ARW) and parameterizations

H. Astsatryan, A. Shakhnazaryan, V. Sahakyan, Yu. Shoukourian, V. Kotroni, Z. Petrosyan, R. Abrahamyan, H. Melkonyan. WRF-ARW Model for Prediction of High Temperatures in South and South East Regions of Armenia. In IEEE e-Science, pp. 207–213. IEEE, 2015.

4. SERVICES – HYDROLOGICAL MODELLING

DaaS Cloud service


to carry out long-term simulation of large watersheds using coarse spatial and temporal resolution hydrological models

<u>H. Astsatryan</u>, W. Narsisian, Sh Asmaryan. SWAT hydrological model as a DaaS cloud service. Springer Earth Science Informatics 9(3), pp. 401–407, 2016.

FUTURE ACTIVITIES

5. RESEARCH PERSPECTIVES

COMPUTING ECOSYSTEM

RESOURCE MANAGEMEN

- Memory optimizations
- Mathematical modeling and methods
- Energy-aware data management

High performance and energy-efficient services and tools

 Efficient parallel algorithms and methods

LINEAR ALGEBRA

- Data reuse
- Efficient algorithms focusing on chunk-sizes and communications

5. RESEARCH PERSPECTIVES

HPDA

- Optimized bare-metal and virtualized architectures
- Performance modeling
 and analysis
- Service provisioning

AI/ML

- Suspendisse viverra sodales mauris.
- Meet scientific and societal challenges
- Analyze HPDA simulations'
 results

loT

• Fog-to-Fog methods

• Fog-to-Cloud methods

5. FUTURE ACTIVITIES

INFRASTRUCTURE UPDATES

New SC (12K cores)

5. FUTURE ACTIVITIES

NATIONAL OPEN SCIENCE CLOUD INITIATIVE

open science for all relevant stakeholders

THANK YOU!

DO YOU HAVE ANY QUESTION?

S

(เกิม)

iiap@sci.am

+374 10282030

https://iiap.sci.am/