
Experience in organizing flexible access to remote computing
resources from the JupyterLab environment using the

technologies of the Everest and Templet projects

Опыт организации гибкого доступа к удаленным
вычислительным ресурсам из среды JupyterLab с

использованием технологий проектов Everest и Templet

Sergei Vostokin, Samara University
Stefan Popov, Samara University

Oleg Sukhoroslov, IITP RAS

9th International Conference "Distributed Computing and Grid Technologies
in Science and Education" (GRID'2021)

5-9 July 2021, 2021

New tools for automating workflows in the fields of data science, scientific computing, and machine learning are
under active development. One of the significant advances is

the interactive web-based development environment JupyterLab.

JupyterLab allows you to quickly create a convenient multi-window web interface for a distributed application that
runs from a browser and does not require local installation.

Problem: A scientific computing applications require not only a rich user interface, but flexible access to a wide range
of computing resources.

The standard solution – deploying JupyterLab where the computation is done – doesn't work in cases:
– there is no technical feasibility of such deployment;
– a distributed application needs to work with several resources at the same time.

We present a solution that covers these use cases, an alternative to commercial cloud solutions such as Google Colab,
Yandex DataSphere, JetBrains Datalore, which are also based on Project Jupyter (https://jupyter.org/).

RELEVANCE OF WORK

2

https://jupyter.org/

METHOD FOR BUILDING A DISTRIBUTED APPLICATION WITH JUPYTERLAB INTERFACE

3

1. We use simple and affordable, but resource-limited options for deploying JupyterLab:
- public cloud deployment based on MyBynder.org;
- virtual machine deployment in a private cloud powered by The Littlest JupyterHub.

JupyterLab server
– implements the interface (in the form of a Jupyter notebook) and
– starts the orchestrator.

2. We implement an orchestrator for ordering tasks in many-task applications using the Templet SDK (developed by
Samara National Research University).

The orchestrator accesses the Everest platform through the REST protocol to perform tasks. It implements a version of actor model.

3. We use the Everest platform (developed by the Institute for Information Transmission Problems of the Russian
Academy of Sciences) to control the launch of tasks on computing resources.

Everest server
- defines the policy of access to resources;
- distributes application tasks across resources;
- returns the results of tasks to the orchestrator, which generates the following tasks in accordance with the calculation logic.

COMPONENTS OF A DISTRIBUTED APPLICATION

4

INFRASTRUCTURE AND DEPLOYMENT PROCEDURE FOR A DISTRIBUTED APPLICATION (1/2)

5

10

5

8

3

4

6 7 9

21

GitHub Binder GoogleCloud

JupyterLab

Everest

Windows 7

Windows 7

Windows 7

Samara

University

VM

VM

VM

VM

Step 1. Registration of computing
resources of the application on the Everest
platform. Obtaining access tokens for agent
programs through the web interface of the
Everest platform.
Step 2. Installing application components.
This installation is performed through the
web interface of the Everest platform.
Step 3. Running Windows 7 virtual
machines in the corporate cloud of Samara
University. Installing agent programs on
them using the access tokens obtained in
Step 1. Verifying the activity of agent
programs through the web interface on the
Everest platform.

Step 4. Uploading the data to a file server in the corporate cloud of Samara University (if needed). This download
can be performed through one of the virtual machines that you started in Step 3.

INFRASTRUCTURE AND DEPLOYMENT PROCEDURE FOR A DISTRIBUTED APPLICATION (2/2)

6

10

5

8

3

4

6 7 9

21

GitHub Binder GoogleCloud

JupyterLab

Everest

Windows 7

Windows 7

Windows 7

Samara

University

VM

VM

VM

VM

Step 5. Launching the application
orchestrator - from the GitHub code
repository via the web interface.
Step 6. Automatically access the Binder
service (after completing Step 5) to build a
docker container with the application
orchestrator running in the JupyterLab
environment.
Step 7. Deploy the docker container (from
Step 6) in the Google Cloud. Returns the link
to the web interface of the orchestrator to
the web terminal of the application user.
Step 8. Launch the orchestrator by the user
via the web interface obtained in Step 7.
Start processing.

Step 9. The application orchestrator sends commands to launch next tasks to the Everest platform server and polls
the status of previously launched tasks.
Step 10. The Everest platform server distributes tasks for execution to free virtual machines through resource agent
programs (installed in Step 3).

COMPUTE-INTENSIVE EXAMPLE: STUDY OF A DYNAMICAL SYSTEM BASED ON THE
CALCULATION OF LYAPUNOV EXPONENTS

7

ሶ𝑥 = 𝜎 𝑦 − 𝑥 ; ሶ𝑦 = 𝑟𝑥 − 𝑦 − 𝑥𝑧; ሶ𝑧 = −𝑏𝑧 + 𝑥𝑦 ൞

ሶ𝑥1 = 𝜎 𝑦1 − 𝑥1 ; ሶ𝑦1 = 𝑟𝑥1 − 𝑦1 − 𝑥1𝑧 − 𝑥𝑧1; ሶ𝑧1 = −𝑏𝑧1 + 𝑥1𝑦 + 𝑥𝑦1
ሶ𝑥2 = 𝜎 𝑦2 − 𝑥2 ; ሶ𝑦2 = 𝑟𝑥2 − 𝑦2 − 𝑥2𝑧 − 𝑥𝑧2; ሶ𝑧2 = −𝑏𝑧2 + 𝑥2𝑦 + 𝑥𝑦2
ሶ𝑥3 = 𝜎 𝑦3 − 𝑥3 ; ሶ𝑦3 = 𝑟𝑥3 − 𝑦3 − 𝑥3𝑧 − 𝑥𝑧3; ሶ𝑧3 = −𝑏𝑧3 + 𝑥3𝑦 + 𝑥𝑦3 .

Main features of the application:
– parallel computing using all licenses of the Maple package of the Samara University;
– sharing virtual machines in corporate cloud and desktop systems;
– distributed bag of tasks with flexible settings.

Popov S. N. , Vostokin S.V., Doroshin A.V. Dynamical systems analysis using many-task interactive cloud
computing // Journal of Physics: Conference Series. — 2020. — Vol. 1694. Issue 1.

DATA-INTENSIVE EXAMPLE: BUILDING A DICTIONARY OF WORD FREQUENCY IN
TWITTER MICROBLOGS

8

Main features of the application:
– DAG of tasks has a complex structure and large dimension;
– tasks interact through the corporate cloud file system.

5.88 GB chunk of data was processed. The size of the input JSON files
ranges from 524 MB to 849 MB. The result of processing is an array of
10 text files with a total size of 1.83 MB, 148885 words were found
(including word forms and neologisms). The file size after processing is
from 158 KB to 223 KB. The type of resulting records in files –
<word> <total number of repetitions of a word in 10 files> <CR>.

The records were ordered end-to-end across the entire set of 10 files.
3.6x acceleration was obtained on 10 virtual machines.

3,4

3,5 2,4

3,6 1,42,5

3,7 2,6 1,5 0,4

2,7 0,51,6

1,7 0,6

1,2 5,60,7

1,3 0,2 5,7 4,6

0,3 4,7

0,1 2,3 4,5 6,7

Vostokin S., Bobyleva I. V. Implementation of frequency analysis of
twitter microblogging in a hybrid cloud based on the Binder, Everest
platform and the Samara University virtual desktop service // CEUR
Workshop Proceedings. — 2020. — Vol. 2667. — P. 162-165

RESULTS AND FUTURE WORK

9

We have implemented a distributed application design that allows you to:
– work through JupyterLab web interface without local installation;
– deploy JupyterLab separately from computing resources;
– use complex workflow scenarios involving parallel computing on multiple resources.

Current implementations
Everest: http://everest.distcomp.org/
The Templet Project: https://github.com/the-templet-project

Proposal for optimization in future
To minimize the dependency on the JupyterLab deployment method, it is proposed to implement the
JupyterLab session as an Everest job.

http://everest.distcomp.org/
https://github.com/the-templet-project

THANK YOU

Sergei Vostokin, Department of Software Systems,
Head of Department (easts@mail.ru)

Stefan Popov, Department of Software Systems,
Postgraduate (stef4n.popov@gmail.com)

