
The development of a new
conditions database
prototype for ATLAS RUN3
within the CREST project

E.Alexandrov1, A.Formica 2, M.Mineev1, S.Roe 3

(on behalf of the ATLAS Collaboration)

1Joint Institute for Nuclear Research, Dubna, Russia,
2 Université Paris-Saclay, CEA/Saclay IRFU, 91191 Gif-sur-Yvette, IRFU/CEA, France,
3 CERN, CH - 1211 Geneva 23, Switzerland

GRID 2021, Dubna

Outline
 Introduction:

 Conditions Data

 Motivations for a new conditions database

 CREST Data Model

 CREST Software
 CREST DB Server

 CREST C++ Client library (CrestApi)

 CREST Command Line Client (CrestCmd)

 COOL to CREST conditions data converter

 Conclusion

2

Conditions Data
Conditions data are non-event data, used to describe the detectors status, and

constitute an essential ingredient for the processing of physics data, in order to
reconstruct events optimally and exploit the full detector's potential.

Conditions data consist of:
 detector calibration and alignment data,

 electrical and environmental measurements such as voltages, currents, pressures,

 temperatures,

 run and information about the data acquisition configuration,

 LHC beam information,

 trigger configuration,

 detector status data.

3

COOL Based Conditions Data

During LHC Run-1 and Run-2, ATLAS Conditions data were managed by the
COOL/CORAL system (by CERN-IT).

COOL is a C++ API based on CORAL client for access to the Relational (Oracle) DB.

COOL high level functionalities:

 Sub-systems have their own “COOL databases” (Schemas) and store payload
data in dedicated tables (Folders)

 Payload data are stored according to Interval Of Validity (IOV). Each IOV is
defined by a since time and an until time.
 Single-versioned Folders: IOVs can be appended (no overwrite, no Tag defined)
 Multi-versioned Folders: IOVs can be stored in arbitrary way, Folder are Tagged

(payload can be overwritten)
• A Global Tag is a collection of multiple FolderTags

 Payloads are retrieved by providing IOV boundaries (and related Tag name)

4

https://twiki.cern.ch/twiki/bin/view/Persistency/Cool
https://twiki.cern.ch/twiki/bin/view/Persistency/Coral

Motivation for a new database

 Caching: Conditions data payload loaded at the same time as
the IOV (some workflows are badly cached!)

 DB structure: Conditions data spread over 30 Schemas and 10k
Folders (about 1TB per data taking period). Every system change
corresponds to new set of Folders

 Long term maintenance and evolution: COOL API (as well as
CORAL) will be not supported by IT after the beginning of Run3.

 Global tags management: there is no native support in COOL)

5

Condition REST (CREST) data model
 The data model consists of five tables which contain metadata and payload

data. It is originally inspired from the CMS conditions DB.

 Conditions data: they are stored in the PAYLOAD table. Values are consumed
as an aggregated set (typically a header and some parameters container(s).

 Conditions meta-data: they are organised in three tables (plus one used
essentially for mapping between tags and global tags)

 IOV: contains the time information, which is stored in one time column (time can be
represented as a timestamp, a run number etc,) and it is valid by default until the
next entry in time. An IOV points to one payload via an sha256 hash key.

 TAG: a label used to identify a specific set of IOVs. An additional table for tag
metadata information was created to ease the migration of existing COOL data.

 GLOBAL TAG: a label used to identify a consistent set of TAGs, involved in a given
data flow. A TAG can be associated to many GLOBAL TAGs.

6

CREST data model scheme
7

Crest DB server
• As Frontier, the CrestDB server exposes functionalities via REST

‣ But SQL is not involved in the dialogue between client and server, instead the internal resources

are accessible via URLs

‣ All HTTP verbs can be used: POST/PUT (to create/update resources), GET and DELETE…
- GET <server>/tags/A_TAG_NAME => retrieve resource with id A_TAG_NAME

- POST <server>/tags {request body} => create new resource (parameters are taken from body)

- PUT <server>/tags/A_TAG_NAME {request body} => update resource A_TAG_NAME

- DELETE <server>/tags/A_TAG_NAME => delete resource A_TAG_NAME

‣ Request and Response bodies are formatted in JSON

‣ Header of the requests can be used (e.g. for formatting the output, deal with caching related

parameter etc.)

• Prototype Implementation
‣ Based on standard Java technologies (JEE, Spring) and specifications (JAX-RS, JPA)

‣ Can be deployed in the same Tomcat server as Frontier or as a standalone service (using
standard java web servers like undertow, jetty, …).

8

CREST Database Architecture
9

The CREST API has been written using OpenAPI specifications. The client library
(in Python) and server stubs (in Java JAXRX) are generated via OpenApi
Codegen library. The first version was implemented as a collaborative
development within ATLAS and CMS database teams.

CrestApi Library

 CrestApi library is a request library to the CREST Server (or to the local file storage). It
allows to store, read (and update) the data on the CREST Server.

 The data transferring mechanism can be changed in the CrestApi library. (The library
prototype was created using Boost Asio library. Now it uses CURL library.)

 CrestApi library is written in C++, and the data exchanged with the server are in JSON
format. The main dependencies are:
 CURL library (to communicate with server),

 Boost Library (boost named parameters),

10

Optional parameters in the CrestApi
methods

 CREST Server API functions have many parameters, most of them can be optional. CrestApi
library uses the Boost Named Parameter Library to work with them.

 Example (IOV list method):

nlohmann::json list1 = myCrestClient.findAllIovsParams("myTag");

nlohmann::json list2 = myCrestClient.findAllIovsParams("myTag",5,3); // here: _page=3,_size=5

nlohmann::json list2 = myCrestClient.findAllIovsParams("myTag",_page=3,_size=5);

nlohmann::json list2 = myCrestClient.findAllIovsParams("myTag",_sort="id.since:ASC",_page=3,_size=5);

It is possible to skip some unused optional parameters when the method is called. Methods using
the Named parameters are in the CrestClientExt class (an extension of the standard CrestClient
library).

11

CREST Command Line Client (CrestCmd)
 The command line client is intended to browse the data stored on the CREST server to simplify the

development of the other CREST project components (check if the data exist or to insert them for tests).

 CREST Command Line Client (CrestCmd) can be used for quick interactions with CREST server, mainly
with the goal of provide management functionalities and browsing capabilities to users.

 Get command list:
crestCmd get commands

 Get a tag with the name test_MvG3:
crestCmd get tag -n test_MvG3

 Get a command description for get tag command:
crestCmd get tag –h

12

CrestCmd commands:13

 Get list methods consists of the methods to get the lists of tag, global tags, global tag
maps and IOVs

 Get methods consists of methods to find a concrete tag, tag meta info, global tag,
payload and payload meta info.

 Create methods consists of methods to create a tag, tag meta info, global tag, global
tag map and an IOV together with a payload.

 Remove methods consists of methods to remove global tag and tag.

CREST Converter: Requirements
Command line Tool

o During prototyping, the converter is used to produce CREST
datasets from existing COOL data

o In deployment, it provides a tool to allow users to copy their
existing data to CREST

o It should be able to accept the same parameters as the current
AtlCoolCopy/AtlCoolMerge tools and be user friendly

 Backup data
o If the CREST connection momentarily fails, write the data to disk in

a format which allows later upload to CREST

Cron job for converting COOL to CREST (not yet realized)
o Run in the background to continually upload data from COOL to

CREST

14

CREST Converter

COOL data format:
 IOV has start and end time
 Folder has set of channels and IOVs
 Each channel can have its own set of IOVs

CREST data format:
 IOVs only have a start time
 Folder has no channels. It has a set of IOVs only. Each IOV has

data in JSON format with all channels. CREST data model does
not know about channels.

15
Main differences between COOL and CREST data models
which require careful handling during the migration process.

CREST Converter: global tag

Problem:
 COOL has no native API for global tag

Solution:
 Add special API for CREST implementation of IDatabase interface of COOL,
 get a global tag list from QTest output with the corresponding tags,
 run data conversion for all these tags,

16

GlobalTag data conversion
Scheme

QTest
output Parser json File Launcher

Convert

Convert

Convert

Folder1/Tag
1

Folder2/Tag
2

Folder3/Tag
3

Global Tag

{"globaltag": "CONDBR2-BLKPA-2018-03", "db":
"CONDBR2", "folders":
{"/CALO/H1Weights/H1WeightsCone4Topo":
{"tag": "CaloH1WeightsCone4Topo-RUN2-02-000",
"schema": "ATLAS_COOLONL_CALO", "type": "run-
lumi", "versioning": 1, "crest": "ok"},
"/CALO/Ofl/Noise/PileUpNoiseLumi": {"tag":
"CALOOflNoisePileUpNoiseLumi-RUN2-UPD4-04",
"schema": "ATLAS_COOLOFL_CALO", "type": "run-
lumi", "versioning": 1, "crest": "ok"}
}}

17

Conclusion

 The CREST project prototype is implemented.

 The CREST C++ client library (CrestApi) was written and included in
the official Offline Release (Athena).

 The conversion tool prototype to fill the CREST DB with the real data
was realized and used to start filling CREST DB using COOL data,
thus allowing to tests further software components in Athena.

18

	The development of a new conditions database prototype for ATLAS RUN3 within the CREST project
	Outline
	Conditions Data
	COOL Based Conditions Data
	Motivation for a new database
	Condition REST (CREST) data model
	CREST data model scheme
	Crest DB server
	CREST Database Architecture
	CrestApi Library
	Optional parameters in the CrestApi methods
	CREST Command Line Client (CrestCmd)
	Слайд номер 13
	CREST Converter: Requirements
	CREST Converter
	CREST Converter: global tag
	GlobalTag data conversion�Scheme
	Conclusion

