Эксперимент БЕККЕРЕЛЬ на ускорительном комплексе НУКЛОТРОН/NICA

Д. А. Артеменков^а, В. Браднова^а, Е. Фиру^b, М. Хайдук^b, Н. В. Кондратьева^a, Н. К. Корнегруца^a, Э. Мицова^{a,c}, А. Неагу^b, В.В. Русакова^a, Р. Станоева^{c,d}, А.А. Зайцев^a, И.Г. Зарубина^a, П.И. Зарубин^{a*}

РУКОВОДИТЕЛЬ ПРОЕКТА

Зарубин П. И.

ЗАМЕСТИТЕЛЬ РУКОВОДИТЕЛЯ

Зайцев А. А.

Явление диссоциации релятивистских ядер, наблюдаемое с уникальной полнотой в ядерной эмульсии (ЯЭ), позволяет изучать ансамбли нуклонов и легчайших ядер, представляющие интерес для ядерной физики и астрофизики. Индивидуальные особенности изучаемых ядер проявляются в вероятностях каналов диссоциации. Достоинства методики ЯЭ включают рекордное разрешение в определении углов вылета релятивистских фрагментов и возможность идентификации среди них изотопов Не и Н путем измерения многократного рассеяния.

На этой основе в эксперименте БЕККЕРЕЛЬ на нуклотроне ОИЯИ изучается кластерная структура легких стабильных и радиоактивных изотопов. В частности, по инвариантной массе пар и троек релятивистских фрагментов Не и Н в диссоциации изотопов ${}^9\mathrm{Be}$, ${}^{10}\mathrm{C}$ и ${}^{11}\mathrm{C}$ идентифицированы нестабильные ядра ${}^8\mathrm{Be}$ и ${}^9\mathrm{B}$, а в диссоциации ${}^{12}\mathrm{C}$ и ${}^{16}\mathrm{O}$ — состояние Хойла. При решении этих задач подготовлены молодые исследователи, осовременены методы анализа и восстановлено производство ЯЭ. По результатам эксперимента подготовлены докторская диссертация и шесть кандидатских диссертаций и опубликованы обзоры. Следующей проблемой является поиск в диссоциации ядер ${}^{14}\mathrm{N}$, ${}^{22}\mathrm{Ne}$ и ${}^{28}\mathrm{Si}$ состояния Хойла, а также более сложных ядерно-молекулярных состояний.

Главной задачей эксперимента БЕККЕРЕЛЬ станет применение метода ЯЭ для изучения разреженной барионной материи, возникающей при диссоциации тяжелых ядер. Температура и плотность этого короткоживущего состояния определяются по соотношению релятивистских изотопов Н и Не и нейтронов и углам их испускания. Слои ЯЭ, облученные в пучках NICA послужат исследовательским материалом, позволяющим исследовать ядерные ансамбли беспрецедентной множественности и разнообразия. Для понимания механизма множественной диссоциации ядер предлагается провести анализ фрагментации ядер из состава ЯЭ вплоть до их полного разрушения под действием релятивистских мюонов. Облучения ЯЭ мюонами будут выполнены в ЦЕРН.

Эффективное решение поставленных задач требует инвестиций в автоматизированные и компьютеризированные микроскопы, а также совершенствование технологии ЯЭ. Проект послужит основой для обновления традиционного сотрудничества по использованию ЯЭ.

^{а)}Лаборатория физики высоких энергий Объединенный институт ядерных исследований (ОИЯИ), Лубна, Россия

^{b)}Институт космических исследований, Мэгуреле, Румыния

с)Юго-Западный университет, Благоевград, Болгария

^{d)}Институт ядерных исследований и ядерной энергии, София, Болгария