Отзыв на проект

«Эксперимент БЕККЕРЕЛЬ на ускорительном комплексе НУКЛОТРОН/NICA»

Отмечая разнообразие и ценность предложенных задач, хочу сосредоточиться на значении предлагаемого проекта для проверки теоретической концепции конденсата Бозе-Эйнштейна как конденсата альфа-частиц – предсказанного аналога ультрахолодных квантовых газов. Статус развития концепции альфа-конденсата детально представлен в обзоре Tohsaki, H. Horiuchi, P. Schuck and G. Roepke "Status of α-particle condensate structure of the Hoyle state" Review of Modern Physics 89 (2017) 01100. В обзоре отмечено предложение о поиске конденсатных состояний в диссоциации релятивистских ядер. Также предложение отмечено в лекционном обзоре W. Von Oertzen "Alpha-cluster condensations in nuclei and experimental approaches for their studies" Clusters in Nuclei, Lecture Notes in Physics 818, 109 (2010). В этой концепции предсказаны степени свободы альфа-кратных ядер вблизи порогов развала, основанные на среднем поле бозонного типа, формируемом газом альфа-частиц. Сосуществуя с обычными фермионными возбуждениями, такие состояния оказываются возможными благодаря тому потому что альфа-частица имеет свойства почти идеального бозона. Они возникают при средней плотности схожей с ядром ⁸Be, которая в 4 раза меньше обычной ядерной. Являясь бозонами, альфа-частицы могут конденсироваться на 0S орбите их собственного кластерного поля. Состояние Хойла с его тремя альфа-частицами рассматривается как легчайший альфа-конденсат и как ядро ⁸Ве с одной дополнительной альфа-частицей на 0S орбите.

Стоит отметить, что ядро 12 С может переходить из основного состояния в несвязанное, но очень долгоживущее при 7.65 МэВ, названное в честь астрофизика Ф. Хойла, который предсказал существование этого резонанса более 60 лет назад для того чтобы объяснить распространенность изотопа 12 С. Переход в состояние Хойла в реакциях слияния может служить «входными воротами» для синтеза более тяжелых ядер. Теоретическое описание экспериментальных данных, извлеченных из неупругого возбуждения электронами ядра 12 С, указывает на то, что состояние Хойла имеет объем в 3-4 раза больший, чем основное состояние. Однако, указывая на экзотическую структуру состояния, эти измерения не отвечают на вопросы относительно его внутренней структуры. Возможно, это окажется возможным в предлагаемом эксперименте, где указание на возникновения состояния Хойла уже было найдено. Предположение о том, что распад конденсата может быть обнаружен в распаде альфачастичного газа по каскадной цепочке 16 О ($^{0+}_{6}$) \rightarrow 12 С($^{0+}_{2}$) \rightarrow 8 Ве ($^{0+}_{2}$) \rightarrow 2 α является очень интересным.

Результаты и предложения по новому проекту БЕККЕРЕЛЬ были представлены его руководителем в приглашенном на рабочем совещании «Легкие кластеры в ядрах и ядерной материи: ядерная структура и распады, соударения тяжелых ионов и астрофизика» (2-6, сентября 2019, Тренто, Италия). Замечательно, что поиски непрерывно возрастающей сложности могут быть осуществлены в одном и том же экспериментальном подходе.

В целом, использование явления диссоциации релятивистских ядер в ядерной эмульсии для генерации состояний квантового конденсата дает альтернативу поискам в этом направлении методами физики низких энергий. Эти идеи могут применяться для объяснения явлений в ядерной астрофизике и физике космических лучей. По всем этим причинам проект заслуживает поддержки. Научная значимость проекта высока. Запрашиваемые ресурсы соответствуют задачам проекта.

Epos