

JINR Long-term Strategy in Particle Physics and AstroPhysics

Dmitry V.Naumov

Feb.04 2020 PAC-52 for PP

Preface

- 2024-2030 = Mid-term (MT)
 2031-2037 = Long-term (LT)
 Terminology used
- Particle Physics (PP) in my talk= PP-NICA Covered by B. Sharkov
- The reported Strategy
 - corresponds to two chapters (six and seven) in the entire JINR draft.
 - Is a consolidated effort of PLNP and VBLHEP researchers.
 - Yet, it is not equivalent to MT and LT peer-reviewed seven-years plans.
 - Funds requested may change

Why any further development of PP?

- The Standard Model (SM) is firmly established both theoretically and experimentally with 55 Nobel Prizes (NP) for it so far.
- All PP is in exceptionally good or in very good agreement with predictions of the SM.
- «There is nothing new to be discovered in physics now. All that remains is more and more precise measurement» Attributed to Lord Kelvin (around 1900).
 He never said anything like that

a paraphrase of Albert A.Machelson, who in 1894 stated: «... it seems probable that most of the grand underlying principles have been firmly established ... the future truths of physical science are to be looked for in the sixth place of decimals.»

Why any further development of PP?

Shortages of the SM

- Baryon asymmetry of the Universe
- Lack of dark matter particle candidate
- Cannot incorporate GR or account for accelerated expansion of the Universe (hypothetic dark energy)

All issues driven by Cosmology

SM cannot explain mass hierarchy of quarks and leptons and their weak mixing

Beyond SM (BSM) is wanted

Three main directions to search for BSM

- Identify phenomena diverging from the SM expectations at high energies.
- Look for specific predictions of new models.

Increase the measurement precision to test further the SM predictions.

{ Understanding of the Universe evolution } could give a deeper insight into PP

Understanding of the Universe evolution

- Search for sources of ultra-high energy photons and neutrinos in the cosmic radiation.
- Multi-Messenger Astronomy.
- Relic neutrino observation.
- Ø Diffuse neutrino observation.
- Gravitational waves observation.

The MT & LT Strategy should be an appropriate balance between these directions based on sensible selection principles

Selection Principles

- The projects should have great discovery potential
- International context: The program should be attractive to the worldwide community and to the JINR Member States.
- <u>Growing expertise at JINR</u>: maintain and develop critical expertise and guarantee an unceasing stream of scientific results.
- Budget: fit into a realistic budget of the JINR
- JINR's role: JINR's leadership is required.

JINR PP & AP five pillars

Accelerator Physics & Technologies

- ATLAS
- CMS
- ALICE
- Future Colliders
- In NICA

Proposed Research

- Studies of the proton structure, hadronization, QCD coupling and of hadron's spectra.
 Tests of the Standard Model at the LHC energies.
 Searches for Supersymmetry.
 Searches for new heavy particles and new interactions.
- Precision measurements of the properties of elementary particles and heavy baryons.
- Searches for signals predicted by scenarios of lowenergy multidimensional gravity, extended gauge models, models with dark matter candidates, and scenarios with fermion flavor violation.

ATLAS

Phase I 0.1 MCHF 32 quadruplets for New Small Wheel 0 LAr CMOS electronics, tests 0 Tile calorimeter: commissioning, tests 0 Phase II **3.6 MCHF** TDAQ 0 LAr: Preamp-Shaper, Optical Link, FEB2, Front-end 0 Power Distribution System, LAr signal Processor Tile calorimeter: LV services 0 MUON: RPC chambers, FE electronics, Gas System, 0 Power System HGTD

CMS

- Opprade in the framework of the CMS Upgrade Project during the long technical stop LS3 (2024-2026).
- R&D for the upgrade of the CMS detector system planned for the LS4 (2030) and the LS5 (2034).
- Maintenance of the CMS detector system within the JINR responsibilities (endcap muon and hadron calorimetry systems).
- Upgrade of the First Forward muon station (ME1/1) and other ME2,3,4/1 muon stations.
- Participation in the construction of new High Granularity Hadron Calorimeters (HGCAL).
 Procurement of various components of the HGCAL, etc.

Future Colliders

Accelerator technology R&P based on precision laser inclinometer developed in JINR.

0

Development (and later implementation) of the experimental program of the future colliders in the following fields: precision measurement of the Higgs boso properties; observation of the triple-Higgs vertex; top quark physics; physics of two-photon collisions; direct searches for the new phenomena at high energies. Participation in the GRID computing infrastructure for decentralized data processing.

 Development of novel particle detectors, in particular compact forward calorimeter developed in the FCAL collaboration, pixel detectors based on GaAs sensors and MPGD detectors (Micromegas, RPC, etc) which are currently developed in JINR.

Creation of the theoretical program for complete one-loo calculations of the electron-positron annihilation into different final states including the polarization effects.

Neutrino Physics & AstroPhysics

- Baikal-GVD
- o TAIGA
- Gravitational Wave Detector
- JUNO
 NOVA
 PUNE, HK

Ονββ

Dark-Side-20k
ARGO
Edelweiss

- DANSS
 NUGEN, RICOCHET
- Ø GEMMA-III
- GERDA
 SuperNEMO

0

LEGEND-1000

Mag. Moment, Coherent, Sterile

KATRIN Mass Meas.

MM Astronomy

Accelerator Physics & Technologies. MT

	24	25	26	27	28	29	30	Main physics goal Budget, USP
ATLAS & CMS	LS3	upgrade			RUN4 LS4, LS5	R&D	LS4	Beyond the SM, precision EW and QCD 3.4M & 2.8M
Future Colliders								Beyond the SM, precision EW and QCD 3.4M & 2.8M
NICA- SPD								TMD PDF, 21M

Construction&

Commissioning

R&D

Pecision Point

Accelerator Physics & Technologies. LT

	31	32	33	34	35	36	37	Main physics goal Budget, USP
ATLAS & CMS		RU LS5	n5 R&D		ls5	RU	N6	Beyond the SM, precision EW and QCD 3.4M & 2.8M
Future Colliders								Beyond the SM, precision EW and QCD 3.4M & 2.8M
NICA- SPD								TMD PDF, 21M

Data taking

STOP

Decision Point

Construction&

Commissioning

R&D

Neutrino Physics & AstroPhysics. MT

	24	25	26	27	28	29	30	N	lain physics goal Budget, USD
Baikal- GVD	Ph	ase II up R&D for	to 1.2 ku Phase III	n3		Phase III		UHE Neutrino sources, 45M	
JUNO				Neuti precis SN, pi 7.5M	rino mass ordering, sion lepton mixing, roton decay				
NOVA PUNE HK			ntinue	Neuti CP-vi lepto 10M	rino mass ordering, olation in the n sector				
Re	÷D	Const Comw	ruction&	g Da	ta takin	g	STOP		Decision Point

	24	25	26	27	28	29	30	Main physics goal Budget, USD
DarkSide- 20k	Dar	kSide-20	k data ta	aking				Dark Matter,
ARGO					0.7M			
TAIGA		TA On	IGA IACT e IACT ga		High energy cosmic ray and gamma spectrum above 10 ¹⁵ eV 1.8M			
Edelweiss	R&I) for new cryogen	v detecto ic systen	rand 1	of Irch in	Dark Matter,		
GERDA	R Legen	&D d-1000		LE	gend-10		Ονββ	
SuperNE MO							Ονββ	
VIRGO					GW, 1.4M			
Red		Constr	ructions	Dat	a taking		STOP	Pecision Point

Neutrino Physics & AstroPhysics. LT

	31	32	33	34	35	36	37	Main physics goal Budget, USD
Baikal- GVD			Phase I	ll up to 2	.4 km3			UHE Neutrino sources, 45M
JUNO								Neutrino mass ordering, precision lepton mixing, SN, proton decay 6.4M
DUNE HK								Neutrino mass ordering, CP-violation in the lepton sector 1.5M

Data taking

STOP

Decision Point

Construction&

Commissioning

R&D

	31	32	33	34	35	36	37	Main physics goal
								Budget, USD
1 7 A A								Dark Matter,
AKU		TA						
		AI.	10A 1A01	THISCOLE	uata tai	cing		nign energy cosmic ray and namma spectrum
TAIGA		On		above 10 ¹⁵ eV				
								1.8M
								Park Matter,
Edelweiss								
legend- 1000								~ ~ ~ ~
SuperNE MO								$0\nu\beta\beta$
VIRGO								GW,
EINSTEIN								35M
R&D		Constr	uctions	Dat	a taking		STOP	Decision Point

Dark energy, dark matter - what rules them? What binds them?

«One Ring to rule them all, One Ring to find them, One Ring to bring them all and in the darkness bind them»

J.R.R. Tolkien

Our Strategy is to explore different paths to find the true root

Explore really all possible paths

Explore really all possible paths

Colliders, Detectors, Multi-Messengers... Many paths to The One Rind

Explore really all possible paths

Expertise to develop

- Application Specific Integrated Circuit (ASIC)
- FPGA Electronics
- Robotics
- Quantum computing
- General Relativity and gravitational interferometry
- Project management
- Follow modern technologies

Gravitational interforometer Invuona

Additional Materials

Accelerator Physics and Technologies ATLAS and CMS

MT

- Studies of the proton structure, hadronization, QCD coupling and of hadron's spectra.
- Tests of the Standard Model at the LHC energies.
- Searches for Supersymmetry.
- Searches for new heavy particles and new interactions.
- Precision measurements of the properties of elementary particles and heavy baryons.
 Searches for signals predicted by scenarios of lowenergy multidimensional gravity, extended gauge models, models with dark matter candidates, and scenarios with fermion flavor violation.

BAIKAL GVD

3D Array of photo-sensors 0 Now: 0.25 km3 Phase I: 0.4 km3 (by 2021) 0 Phase II: 1.2 km3 (by 2027) 0 Phase III: 2.3 km3 (by 2037) Flagship Experiment of JINR Hardware 6 Software Everything JINR & INR are leading institutes Aim to identify sources

JUNO

JINR is THE Major Collaborator in JUNO Powering JUNO. 2 M\$

High Voltage Units for 20k LPMTs and 18k sPMTs: design, production, tests, calib, installation

 Muon Veto. 1.25 M\$ design, production, tests, calibrations, installation

PMT tests.
 O.1 M\$
 design, production, tests, methods, calibrations, installation

TAO (near det).
 1 M\$
 SiPM purchase, design, tests, methods, calibrations

With JUNO before 2030

- Mass Ordering determination (3-4 σ)
- Lepton mixing better than in the quark sector
- Largest dataset of geo-neutrinos
- Solar neutrino
- If lucky:
 - SuperNOVA with 10000 events
 - Proton decay
 - Diffused SN neutrino
 - And much more

DarkSide 6 Edelweiss

0

Dark matter

x

x

- NOVA: MO, CP-violation 0
- Kalinin PP: magnetic moment, coherent, sterile 0
- TAIGA: 100 TeV gamma 0
- GERDA, SuperNEMO: $0\nu\beta\beta$ 0

Long-term plan after 2030

Long-term plan after 2030

NOva

DUNE : Scintillation light R0 in LAr TPC
(now)OrHyperK : Yet to be determined

- BAIKAL GVD
- JUNO
- ATLAS High Luminosity

 Gravitational waves interferometers: LIGO/VIRGO/ Einstein or interferometer @DUBNA