

Progress towards realization of the BM@N project

M.Kapishin

M.Kapishin

NICA Heavy Ion Complex

BM@N: heavy ion energy 1 - 4.5 GeV/n, beams: p to Au, Intensity ~few 10⁶ /s (Au)

First BM@N paper on physics results in circulation in BM@N Collaboration

Production of Λ hyperons in 4 and 4.5 AGeV carbonnucleus interactions at the Nuclotron

The BM@N (Baryonic Matter at Nuclotron) is the first experiment undertaken at the accelerator complex of NICA-Nuclotron. The BM@N scientific program comprises studies of dense nuclear matter in heavy ion beams of the intermediate energy range between the SIS-18 and NICA/FAIR facilities. The first experimental run was performed in the carbon beam of the 4 and 4.5 AGeV kinetic energy with fixed targets. First physics results are presented on Λ hyperon production in carbon-nucleus interactions. Transverse momentum, rapidity spectra and yields of Λ hyperons are measured. The results are compared with predictions of theoretical models and with the experimental data on carbon-carbon interactions measured at lower energies.

Configuration of BM@N detector for heavy ion program (without beampipe)

BM@N

GEM central tracker for heavy ion runs

- 7 upper GEM 163x45 cm² chambers produced at CERN workshop were integrated into BM@N experimental setup
- 7 lower GEM 163x39 cm² chambers were assembled, delivered to BM@N and tested

M.Kapishin

BM@N experiment

Setup of GEM detectors for cosmic tests

GEM group

GEM 163x39 cm² chamber assembly process at CERN

M.Kapishin

Transitional Hybrid Central Tracker for heavy BM@N ion runs: Forward Si +"Pilot" STS + GEM

Heavy ion beam intensity ~few 10⁵ Hz

M.Kapishin

For heavy ion beam intensities of few 10^6 Hz \rightarrow keep 4 STS + 7 GEM \rightarrow fast FEE and readout electronics

Status of BM@N STS

Quality Assurance tests of the modules were developed and tested on the first assembled modules. Module assembly procedure was improved with the aim to minimize the number of not-operable channels (less than 3%)

Ladder Assembly Device and corresponding fixtures were developed and produced for the assembly of the BM@N and CBM ladders. Accuracy of the sensor positioning is tested.

Technical Design Report

The Silicon Tracking System as part of the hybrid tracker of the BM@N experiment **Dec 2019: TDR** - to be approved by DAC Joint effort by the groups from JINR, NRNU MEPhI, SINP MSU, GSI, WUT

Status of BM@N STS Readout Electronics

GBTxEMU board

New version of BM@N FEB with 8 STSXYTER ASICs

SI test of the e-link connection between FEB and GBTxEMU board Adaptation of the CBM-type readout chain for the BM@N STS system:

- A new version of the Front-End Board (FEB) was developed and produced. It is adopted to the integrational and cooling requirements of BM@N STS. (MSU group)
- Different types of data cables were tested to provide 10m LVDS connection between the front-end electronics and GBTxEMu board. (JINR group)
- A GBTxEMU board based on the Xilinx Artix 7 FPGA module was developed, produced and tested (GSI group)

Beam pipe in front of the target

• Beam pipe elements and detector boxes are produced and delivered to Dubna

M.Kapishin

Beam, Si tracking detectors and target station BM@N

M.Kapishin

Carbon fibre beam pipe for heavy ion runs BM@N

DD "Arkhipov" (Moscow, Russia) – 1m test sample of carbon beam pipe is ready
Vacuum tests of the sample are to be performed this week in LHEP JINR

NPI CAS Rez group: irradiation tests done with $7 \cdot 10^{12}$ n/cm² neutrons \rightarrow next test with protons up to 1 kGy

M.Kapishin

CSC chambers for Outer tracker in heavy ion runs

A.Vishnevsky and team, LHEP JINR

- Four 1065x1065 mm² CSC chambers to be installed in front and behind ToF-400 should be ready by end of 2020
- Two 2190x1453 mm² CSC chambers to be installed in front and behind ToF-700 should be produced in 2021

First 1065x1065 mm² CSC chamber in BM@N Ar run

M.Kapishin

New FHCAL hadron calorimeter

Team of INR RAS, Troitsk

CBM modules MPD modules

Measure E_{dep} v Asymmetry of E_{dep} and ΣZ^2 with quartz hodoscope in the beam hole to resolve central and peripheral interactions

- FHCAL assembled and installed into BM@N setup
- Cosmic tests are under way

Beam parameters and setup at different stages of BM@N experiment

BM@N

Year	2016	2017 spring	2018 spring	fall 2021	2022 and later
Beam	d(↑)	С	Ar,Kr, C(SRC)	Kr,Xe	up to Au
Max.inten sity, Hz	0.5M	0.5M	0.5M	0.5M	2M
Trigger rate, Hz	5k	5k	10k	10k	20k→50k
Central tracker status	6 GEM half planes	6 GEM half planes	6 GEM half planes + 3 forward Si planes	7 GEM full planes + forward Si planes	7 GEM full planes + forward Si + large STS planes
Experiment al status	technical run	technical run	technical run+physics	stage1 physics	stage2 physics

BM@N present status and next plans

- First BM@N paper with physics results on Λ hyperon production in C + C, Al, Cu, Pb interactions is in circulation in the BM@N Collaboration
- TDR report on the large aperture Silicon Tracking System of the BM@N experiment is released
- Progress in hardware development and production for heavy ion program:
- ► Full set of GEM detectors for the central tracker is produced and delivered to BM@N
- Development of forward silicon detectors, silicon beam detectors is according to time plan
- Development of STS detectors, FEE and readout electronics
- Development and production of cathode strip chambers for the outer tracker
- ► Beam pipe in front of the target produced and delivered to BM@N
- Prototypes of carbon fiber beam pipe are under tests for vacuum and radiation resistance
- ► MPD / CBM type of hadron FHCAL calorimeter installed into BM@N setup

Thank you for attention!

M.Kapishin

GEM tracker: acceptance / momentum resolution / detection efficiency

Momentum resolution / detection efficiency

BM@N

Hybrid central tracker for heavy ion runs: BM@N STS vs STS +GEM A.Zinchenko, P.Senger

Hybrid STS + GEM tracker:
≥ 2 times increase in number of reconstructed tracks and Λ hyperons
≥ 2 times better momentum resolution

Upgrade of central tracker with STS

STS-1

Team: LHEP JINR, MSU, GSI, Tübingen University

STS-2

M.Kapishin

Total: 292 modules, ~600k channels

Trigger and T0 detectors for heavy ions

Box for BC1, Veto

Trigger group

Fast quartz FFD detectors for high intensity heavy ions

M.Kapishin

BM@N BMN & SRC program

TECHNISCHE UNIVERSITÄT DARMSTADT

to study SRC with exclusive inverse kinematic reactions

First SRC @ BMN run in March 2018

Objectives:

- identify 2N-SRC events with inverse kinem
- study isospin decomposition of 2N-SRC
- study A-2 spectator nuclear system

First expected result:

 Study A-2 residual system after SRC knockout

M.Kapishin