

The COherent Muon to Electron Transition

JOINT INSTITUTE

(COMET) experiment at J-PARC (Japan)

The COMET project at JINR

Report

on the results

and extension request for the period 2021-2023

JINR COMET team

DLNP: G. Adamov, V.N. Duginov, K.I. Gritsai, I.L. Evtoukhovich, P.G. Evtoukhovich, V.A. Kalinnikov, E.S. Kaneva, X. Khubashvili, A. Kobey, A.S. Moiseenko,

A.V. Pavlov, B.M. Sabirov, A.G. Samartsev, Z. Tsamalaidze,

N. Tsverava, E.P. Velicheva, A.D. Volkov

VBLPHE: D. Baygarashev, T.L. Enik

BLTP: D. Aznabayev, A. Issadykov, G.A. Kozlov

LIT: A. Khvedelidze

1

The JINR COMET team leader: Z. Tsamalaidze

Charged Lepton Flavor Violation (CLFV)

Charged-lepton flavorviolating (cLFV) processes offer probes for new physics with discovery sensitivity.

The most sensitive probes of CLFV utilize high-intensity muon beams.

WHAT IS THE NEXT STEP ? AND WHERE? Frontiers of particle physics

a. Energy Frontier

using high-energy colliders to discover new particles and directly probe the architecture of the fundamental forces. Many theories predict particles with masses > 1 TeV. **CERN, FCC (2040?)**

b. Intensity Frontier

using intense particle beams to uncover properties of neutrinos and observe rare processes that will tell us about new physics Beyond the Standard Model (BSM). J-PARC, Fermilab, PSI.

c. Cosmic Frontier

using underground experiments and telescopes, both ground and space based, to reveal the natures of dark matter and dark energy and using high-energy particles from space to probe new phenomena.

µ-e Conversion

Measure the ration of conversion relative to ordinary muon capture on the nucleus:

 $\mathbf{B}(\boldsymbol{\mu}^{-} \mathbf{N} \rightarrow e^{-} \mathbf{N}) = \frac{\Gamma(\boldsymbol{\mu}^{-} \mathbf{N} \rightarrow e^{-} \mathbf{N})}{\Gamma(\boldsymbol{\mu}^{-} \mathbf{N} \rightarrow v \mathbf{N}^{\prime})} , \text{ (where } \mathbf{N}^{\prime} = (\mathbf{A}, \mathbf{Z}-1); \text{ or } (\mathbf{A}^{\prime}, \mathbf{Z}^{\prime}) + \text{ protons}, \text{ neutrons}, \text{ gammas})$

The COMET collaboration

The COMET Collaboration

R. Abramishvili¹¹, G. Adamov¹¹, R. Akhmetshin^{6,31}, V. Anishchik⁴, M. Aoki³² Y. Arimoto¹⁸, I. Bagaturia¹¹, Y. Ban³, A. Bondar^{6, 31}, Y. Calas⁷, S. Canfer³³, Y. Cardenas⁷ S. Chen²⁸, Y. E. Cheung²⁸, B. Chiladze³⁵, D. Clarke³³, M. Danilov^{15, 26}, P. D. Dauncey¹⁴, J. David²³, W. Da Silva²³, C. Densham³³, G. Devidze³⁵, P. Dornan¹⁴, A. Drutskoy^{15, 26}, V. Duginov¹⁶, L. Epshteyn^{6,30}, P. Evtoukhovich¹⁶, G. Fedotovich^{6,31}, M. Finger⁸, M. Finger Jr⁸, Y. Fujii¹⁸, Y. Fukao¹⁸, J-F. Genat²³, E. Gillies¹⁴, D. Grigoriev^{6, 30, 31} K. Gritsay¹⁶, E. Hamada¹⁸, R. Han¹, K. Hasegawa¹⁸, I. H. Hasim³², O. Hayashi³², Z. A. Ibrahim²⁴, Y. Igarashi¹⁸, F. Ignatov^{6, 31}, M. Iio¹⁸, M. Ikeno¹⁸, K. Ishibashi²² S. Ishimoto¹⁸, T. Itahashi³², S. Ito³², T. Iwami³², X. S. Jiang², P. Jonsson¹⁴, V. Kalinnikov¹⁶, F. Kapusta²³, H. Katayama³², K. Kawagoe²², N. Kazak⁵, V. Kazanin^{6, 31}, B. Khazin^{6, 31} A. Khvedelidze^{16,11}, T. K. Ki¹⁸, M. Koike³⁹, G. A. Kozlov¹⁶, B. Krikler¹⁴, A. Kulikov¹⁶, E. Kulish¹⁶ ,14,21 0 pan²⁹ about 200 collaborators M. Lancast D. Lomidze Mao³ O. Markin¹ . Mo-41 institutes, 17 countries kai²² hamed Kam T. Nakamot T. Numao³⁶, J. O'Dell³³, T. Ogitsu¹⁸, K. Oishi²², K. Okamoto³², C. Omori¹⁸ T. Ota³⁴, J. Pasternak¹⁴, A. Ryzhenenkov^{6, 31}, B. S. Still growing! A. Sato³², J. Sato³⁴, Y. K. Still growing! M. Slunecka⁸, A. Straessner³⁷, D. Stöckinger³⁷, M. Sugano¹⁸, Y. Takubo¹⁸, M. Tanaka¹⁸, S. Tanaka²², C. V. Tao²⁹, E. Tarkovsky^{15,26}, Y. Tevzadze³⁵, T. Thanh²⁹, N. D. Thong³², J. Tojo²², M. Tomasek¹⁰, M. Tomizawa¹⁸, N. H. Tran³², H. Trang²⁹, I. Trekov³⁵, N. M. Truong³², Z. Tsamalaidze^{16,11}, N. Tsverava^{16,35}, T. Uchida¹⁸, Y. Uchida¹⁴, K. Ueno¹⁸, E. Velicheva¹⁶, A. Volkov¹⁶, V. Vrba¹⁰, W. A. T. Wan Abdullah²⁴, M. Warren³⁸, M. Wing³⁸ T. S. Wong³², C. Wu^{2,28}, H. Yamaguchi²², A. Yamamoto¹⁸, Y. Yang²², W. Yao², Y. Yao², H. Yoshida³², M. Yoshida¹⁸, Y. Yoshii¹⁸, T. Yoshioka²², Y. Yuan², Y. Yudin^{6, 31}, J. Zhang², Y. Zhang², K. Zuber³⁷

Including five JINR member states countries Belarus, Czech Republic, Georgia, Kazakhstan, Russia

Two-phase realization

5

Start from 2022

COMET Phase-II

Start from 202?

COMET at J-PARC

Joint Project between KEK and JAEA

Proton beam and power for COMET Phase – I and Phase - II 8GeV 8 GeV 3.2kW 56kW

COMET phase-I

Search for µ-e conversion

A search for µ-e Conversion at the intermediate sensitivity with would be 100-times better than the present limit (SINDRUM-II) 3 x 10⁻¹⁵

Background Study for the full COMET Phase-II

Direct measurement of potential background sources for the full COMET experiment by using the actual COMET beam line

COMET Phase-I serves several roles that are highly complementary to the Phase-II experiment. It provides a working experience of many of the components to be used in Phase-II and enables a direct measurement of backgrounds. Significantly it will also produce competitive physics results, both of the μ -e conversion process that is the primary focus of COMET Phase-II, and of other processes that COMET Phase-II cannot investigate.

COMET Phase-I Requirements and Detectors

How to reach unprecedentedly high sensitivity (7.0 x10⁻¹³ \rightarrow 10^{-15,-17})

COMET Requirements:

1. Reduce Beam Associated Background

Pulsed proton beam with high proton extinction and used the long $\boldsymbol{\mu}$ lifetime

2. Highly intense muon source

High Intensity Pion Production (μ from π decay)

Use magnetic solenoids to capture, transport, charge and momentum selection, detect $\boldsymbol{\mu}$

3. Curved solenoids for charge and momentum selection, electron Energy Resolution and Timing Excellent calorimeter and tracking detectors,

employ new electronic technology to handle higher rates.

Cylindrical Drift Chamber

COMET CDC

- Surrounding target
- 19 layers structure
 ~5,000 sense wires
 ~15,000 field wires
- All stereo layers
- He base gas
 (He : iC₄H₁₀ = 10 : 90)
- Study of prototype chamber is done
 - basic performance study was done, it is OK
 - spatial resolution < 200 μ m obtained,momentum resolution <200 keV/c
 - wire aging test is almost done
- Design was fixed based on Belle-II CDC with modification for COMET
- Construction started in 2014, and completed in 2016
- Commissioning with cosmic-ray is ongoing in KEK now

Straw Tracker: 5 station (Phase – I)~ 2500 straw tubes, 9.75 mm diameter, 20 μ m thickness, Ar:C₂H₆ = 50:50

Requirements:

Work in vacuum, magn. field 1 Tesla
Momentum resolution ≤ 200 keV/c
Space resolution ≤ 200 µm

Electromagnetic calorimeter

ECAL (crystal type LYSO, Lu_{1.8}Y_{.2}SiO₅Ce)

- Combination of around 600 (for Phase II 2272) LYSO crystals.
- Total size: diameter ~ 1m
- Crystal size 20x20x120 mm³ (11 radiation length
- Photon detector: APD

Requirements:

- < 5% ER at 105 MeV</p>
- 1 cm space resolution
- < 100 ns time resolution</p>
- Work in vacuum and magnetic field of 1 Tesla

Cosmic Ray Veto (CRV)

- The whole detector will be shielded from cosmic rays by 4 layers of plastic scintillators (active shield).
- CRV consists of 8 supermodules
- The modules are formed from 15 strips
- Strip sizes: 0.7 x 4 x 220 cm³, 1.2 mm diameter WLS

Also used passive shields, 2 meter of concrete and 0.5 m thick steel.

COMET Collaboration will be pleased if JINR⁰team participates in the development and production of CRV system for Phase-I.

Requirement: Efficiency ≥ 99.99%.

To control the background

Intrinsic physics background

- Mostly from muon decay in orbit (DIO)

- Calculated by Czarnecki with radiative correction. Branching ratio drops with order-5 function near end point.
- Momentum resolution required to be better than 200 keV/c
- Beam related background
 - Energetic particles in beam with E>100MeV
 - Mostly prompt. Can be suppressed by a delayed measurement window (~700 ns)
 - Some due to leaked proton. Proton extinction factor required to be $< 10^{-10}$.
- Cosmic ray background
 - Cosmic ray: cover the system with cosmic ray veto detectors.
 Inefficiency < 10⁻⁴

The total estimated background events for a single-event sensitivity of 3 x 10^{-15} in COMET Phase – I with a proton extinction factor 3 x 10^{-11} is 0.032 events

COMET Phase-I Sensitivity

3 x 10⁻¹⁵ (as SES) achievable in ~ 150 days, or < 7 x 10⁻¹⁵ (as 19% C. L/ upper limit)

JINR group's contributions and responsibilities

We are in the project since 2008

- 1. Straw tracker
- 2. Electromagnetic calorimeter
- 3. Software studies (simulations) for straw tracker and ECAL
 - 1. A large amount of work on simulation of processes in crystals and straw detector has been done. This work continues.

Straw tracker

- Straw module design
- Straw tubes production and testing in Japan
- The study of the properties of straws
- The manufacturing area for straw-tube R&D at DLNP, JINR
- The simulation of straws

Straw module design

Design of support structure

Schematic view of the ROESTI boards

Design of a complete module

Module contains about 1000 straws with the diameter of 5mm (500 in horizontal direction + 500 in vertical direction) which in its turn means 60 ROESTI boards for both direction have to be allocated along the circular surface which are cooled down by cooling gas

- Next to final design of the straw module for the 5mm diameter straws is developed
- Complete construction documentation for production is in progress
- Also full documentation on the ROESTI board, we will try to produce in RUSSIA, 60pcs.
- If we are locky to produce the module in time, it can be used for Phase-I measurements

Straw tubes production for Phase-I

For Phase-II we need even thinner and less diameter tubes: 5 mm diameter and 12 μm wall thickness. ¹⁵ For this purpose we prepared a new straw production line in our laboratory.

Straw tubes testing in Japan

Unit	Diameter	Working pressure	Max pressure
2700	9.8 mm	1 bar	6 bar

J-PARC Clean room in experimental hall Left: Construction of ready straw tube Pressure measure device: designed and developed at JINR

16

Initial pressure in the tubes and after two years. Pressure loss for 2 years 1 mbar per day.

The study of the properties of straws

The following mechanical properties of the 9.8 mm straws have been measured:

- the range of elastic deformation of the straw
- the influence of temperature and the dependence of the elastic properties of the straw on its thickness
- The tubes aging

Developed stand's general view

The influence of temperature and the dependence of the elastic properties of the straw on its thickness.

Measurement of the elastic and plastic deformation's area. The limit value of the straw tension is obtained 1.85kg

Stress relaxation on time. The service life of straw detector is 9 years.

Also continues the simulation of the straws and studying the straw parameters

The manufacturing area for straw-tube R&D at DLNP, JINR

Completed real working machine for full dimension 12 µm thickness and 5 mm diameter straw tube production with controllable parameters

Machine, for the production of straws tubes

control 2) 5 mm diameter and 12 µm wall thickness straw tube

- 3) Examination of straw Quality control at CERN, Straw tube
- 4) Study straw tube properties
- Precise measurements and monitoring of straw 5) diameter with optical methods, accuracy of 0.1 μm 18

Already have a 5 mm diameter and 12 µm tube

Results and measurements of first in the world ultrathin 12/20 µm thick wall 4.8/9.8 mm diameter straw tubes made by using Ultrasonic welding technology

19

Parameters	20 µm thickness	12 μm thickness
Diameter	9.8±0.04mm	4.8-6 mm
length	1200-1600 mm	50-1600 mm
Test pressure	2 bar absolute	2 bar absolute
Max. pressure	7±1.2 bar absolute	4 ±1 bar absolute
Width of seam	~500 µm	~ 350 µm
Produced amount	2700	

Samples of straw tubes pressurized at 3-4 bar

New design straw, welded by one seam without using glue

4 bar - test pressure before mechanical damage

Scanning straw tube with a diameter of 5 mm, a thickness of 12 and 60 cm long

Straw Tracker Status — COMET Phase-I

Assembly for 1st Station is ongoing

Pressure Vessel, constructed (with 1straw stretching, without Outer Cylinder) Straw Process, Ongoing (cut as a proper length, glued with end-plugs, ready to be stretched)

Taking into account the success of JINR, DLNP COMET group in R&D and production of thinwall tubes with 5 mm diameters, and development of straw station design, the COMET collaboration supports the idea of JINR group to use an additional station

with new tubes at Phase-1.

Straw schedule

	2019	2020	2021	2022
Tracker Construction	Station#1 Construction	Station#2 Station#3	Station#4 Station#5	
for Phase-I	Preparation Assembly	Straw Process for #2,3,4 and	d #5	
Gas-Supply / Cooling System	Pre-System Construction For Station#1, With Air	Test with Station#1 Gas / Cooling System#2 System#2	as / oling tem#3 Gas / Cooling System#4 System#5	lation ×
Electronics	RÖSTI Final Design FE chain test w/ T FE interface se	RÖSTI Mass-Proc Grig. Quality As election Chain test	luction sessment FE comr	(RÖSTI/Trig.) Installation nissioning w/ and w/o beam
Operation	Slow cont Prototype wit	Full SC dev h 1st Station Commission	elopment oning with Cosmic-ray	
				★ Integrated Operation

Electromagnetic calorimeter

R&D of LYSO crystals, LYSO crystal parameters investigation

The test bench has been prepared in DLNP

Optimal wrapping of LYSO:Ce crystal

	VIII 14	L	X	X			- no - 2T - 4T - 6T	wrapi ef. ef. ef. ef.+Es	ng		
	Sei 12 Abuu 10	14 1	+	14	44/4	144	21	ef.+Es	sr+Esr	(end)	
-	8-	20	30	40	50	60	70	80	90	100	110
							Leng	ath of	crys	tals, n	nm

LYSO:Ce (7, E=1.271 MeV)

Energy resolution on the center of crystal

	Wrapping		Energy resolution (L= 60 mm), [%]
1	Without	60	11.37
2	2Teflon	74	11.44
3	4Teflon	79	10.59
4	6Teflon	83	9.5
5	2Teflon+ESR	~98,5	8.1

Three candidates vendors

- Saint-Gobain (SG), Baseline
- OXIDE (OX), domestic candidate
- Suzhou JT Crystal Technology (JTC)

	X-FI
- AL	
	ALL SA

SG LYSO					
Properties	Standard LYSO	Enhanced LYSO			
Density [g/cm ³]	-	7.1			
Hygroscopic	r	10			
Attenuation length for 511keV (cm)	1	.2			
Energy resolution [%] @ 511 keV	9.5	8 - 8.5			
Wavelength of emission max [nm]	420				
Refractive index @ emission max.	1.81				
Decay time [ns]	45	35			
Light yield [photons/MeV]	30000	35000			
Average temperature coefficient from 25 to 50° C (%/°C)	-0	.28			
Photoelectron yield [% of Nal(Tl)] (for γ-rays)	-	75			

- Simulation of processes in crystals
- Comparison of the crystal types
- Simulation of optimal structure of the calorimeter
- Simulation of the calorimeter geometry in framework ICEDUST
- Experimental study of the main parameters (uniformity, light output) LYSO crystals on a precision JINR stand
- Calibration of 64 crystals of LYSO at the JINR stand for Beam Test (Tohoku)
- Participation in a calorimeter design
- Quality control (certification) of all crystals will be tested in JINR (full responsibility)
- Calorimeter assembling, testing, calibration and installation at setup. (In the near future)

The LYSO crystal certification

A stand was created for certification of the crystals for the COMET calorimeter Passport for every crystal

- The bench is made of a precision system for moving a radioactive source, a set of detection equipment and a DAQ system.
- The light output and the losses of the light along the crystal length for each crystal are measured.
- About 200 (in total we have more than 300 crystals) were tested. Checking of a new batch of crystals continues.

Radiation test 3 crystals

6-10¹¹ n/cm²

- Light output increased by about 1.1-1.2 times, but after 3 months returned to almost the initial value.
- Own radioactivity increased from 12 kHz to 30 kHz, but after 3 months fell to 15 kHz.

Repeated measurements of

irradiated crystals were performed.

They confirmed the return of the

characteristics to the original ones

The light output and the losses of the light along the crystal length for each crystal are measured. The data for the crystals are stored in the paper and electronic formats.

The light attenuation. The example of the losses of light output along the crystal length for two of the LYSO(Ce) crystals. The good crystal 35LYS027-02 has the light attenuation ~0.6 %/cm with good linearity.

StrECAL system integration tests at ELPH in Tohoku Univ.

Straw prototype

Current Status

Straw tube Tracker

- the straw tubes were already mass-produced and checked.
- the 1st station of the straw tracker system has already begun

ECAL

- in the process to purchase ~500-600 LYSO crystal for Phase-I
- the design work for the real detector is also ongoing

- with prototype of Straw tube Tracker and prototype of ECAL
- 100 MeV/c electron beam
- successfully triggered by the ECAL and the electron track was reconstructed with the Straw tube Tracker.
- The prototype of trigger system was tested.

Schedule of works on the project in 2021-2023

Straw tracker

- Finalization assembling, testing, installation, cosmic test and calibration of the straw detector for Phase-I, **2021 -2022**
- R&D program for production of the straw tubes of 12 µm wall thickness and 5 mm diameter for Phase-I (about 1000 pcs), production of prototypes and their measurement on beam, 2021 -2022
- Measuring of all mechanical properties and development of standards for quality control of manufactured of the 5 mm brand-new straw tubes, 2021 -2022
- Production of a full-scale straw station for Phase-I, with new tubes (12 μm, 5 mm), 2021 -2022
- Preparation for mass-production and testing of straw tubes for Phase-II, 2023
 ECAL
- Test (certification) of the crystals in JINR to be used in the calorimeter, **2021-2022**
- Development and optimization of a crystal calibration method for a COMET calorimeter, given the features of the experiment: the presence of a magnetic field and high resolution calorimeter, 2021 – 2023
- Common task
- Participation in the calorimeter designing, assembling and cosmic test, **2021-2022**
- Participation in assembling, testing and installation of whole detector system for Phase-I, 2021-2023
- Complex detector system (tracker, calorimeter, etc.) simulation, **2021 2022**
- Participation in the engineering and physics run for Phase-I, 2022-2023
- Participation in the data acquisition and analysis, 2022-2023
- Participation in the beam tests of the detector components for Phase II, 2021 -2023

Estimation of human resources

Name	FTE	Positon	Work (apart common duties like shifts)
G. Adamov	0.7	Junior researcher PhD student	Software tools development, analysis
D. Aznabayev	0.2	Junior researcher PhD student	Theoretical issues, physics analysis
D. Baygarashev	0.2	Junior researcher PhD student	Data quality control, calibration, physics analysis
V.N. Duginov	0.5	Head of sector	Calorimeter development, analysis
T.L. Enik	0.2	Head of sector	Hardware development and support
K.I. Gritsai	0.2	Senior scientist	Software tools development
I.L. Evtoukhovitch	0.7	Senior engineer	Hardware support
P.G. Evtoukhovitch	1.0	Senior scientist	Hardware development and support
V.A. Kalinnikov	0.9	Leading scientist	Calorimeter development, MC, analysis
E.S. Kaneva	1.0	Engineer	MC development, analysis
X. Khubashvili	0.7	Engineer	Hardware support
A. Khvedelidze	0.3	Leading scientist	Theoretical issues, models development
A. Kobey	0.5	Master student	Calorimeter development, MC, analysis
G.A. Kozlov	0.2	Leading scientist	Theoretical issues, models development
M.D. Kravchenko	1.0	Junior researcher PhD student	Hardware development, data quality control, analysis
A.S. Moiseenko	1.0	Scientist	Hardware development and support
A. Issadykov	0.2	Senior scientist	Theoretical issues, physics analysis
A.V. Pavlov	1.0	Junior researcher PhD student	MC, Data quality control, physics analysis
B.M. Sabirov	1.0	Scientist	Hardware development and support
A.G. Samartsev	0.2	Senior engineer	Hardware development, detector design
Z. Tsamalaidze	0.7	Head of sector	Project leader
N. Tsverava	1.0	Junior researcher PhD student	Hardware development, calibration, analysis
E.P. Velicheva	1.0	Senior scientist	Calorimeter development, MC, analysis
A.D. Volkov	1.0	Scientist	Hardware development
Total FTE	15.4		

Papers of the project authors related to the COMET experiment

- 1. V. Kalinnikov, E. Velicheva. Investigation of LYSO and GSO crystals and simulation of the calorimeter for COMET experiment. // Phys. Part. Nucl. Lett. 11 (2014) 3, 259-268.
- V. Kalinnikov, E. Velicheva. Research of the ECAL calorimeter used in the COMET experiment. // Functional Materials, 22 (2015), 1, 116-125.
- 3. V. Kalinnikov, E. Velicheva. Research of long GSO and LYSO crystals used in the calorimeter developed for the COMET experiment. Functional Materials, 22 (2015), 1, 126-134.
- 4. V. Kalinnikov, E. Velicheva. Simulation of Long GSO Crystals for the COMET Experiment. // Nonlinear Phenomena in Complex. V. 8, No 2 (2015). Pp. 215 221.
- В. Калинников, Е. Величева, А. Лобко. Исследование длинных кристаллов GSO и LYSO для создания сегментированных электромагнитных калориметров. Физика сцинтилляторов. Материалы, методы, аппаратура. Изд: ИСМА. 2015. С. 137-158.
- 6. Калинников В. Величева Е. Исследование параметров и разработка алгоритма пространственной реконструкции для калориметра COMET эксперимента. Изд:ИСМА . 2015. С. 186-203.
- V. Kalinnikov, E. Velicheva, Z. Tsamalaidze, Lobko, O. Missevitch, Y. Kuno. Spatial and temporal evolution of scintillation light in LYSO electromagnetic calorimeter for non-paraxial electromagnetic showers. //Nonlinear Phenomena in Complex. V. 19, No 4 (2016). Pp. 345 – 357.
- 8. M. Eliashvili, A. Khvedelidzre, M. Nioradze, Z. Tsamalaidze, THE COMET EXPERIMENT AT J-PARC: A STEP TOWARDS SOLVING THE MUON ENIGMA, TSU Science, N6, (2014)
- 9. V. Kalinnikov, E. Velicheva. Simulation of Long GSO Crystals for the COMET Experiment. NONLINEAR PHENOMENA IN COMPLEX SYSTEMS, 18, №2, 215 (2015).
- 10. А.Д. Волков. Контроль натяжения трубок в строу детекторах. Успехи прикладной физики, 2, №4, 413 (2014).
- 11. A.D. Volkov. Wire tension monitor for proportional chambers of the ANKE spectrometer. NIM A 701, 80 (2013).
- 12. A.D. Volkov et all. Influence of internal pressure on stress of welded straws of track detectors. Uspekhi prikladnoi phiziki, 2018, v 6, № 1, p. 83 90, in Russian
- 13. A.D. Volkov *et all.* The test bench for studying the characteristics of straw tubes. Preprint JINR E13-2018-70
- 14. Волков А. Д., Кравченко М. Д., Павлов А. В. Стенд для исследования характеристик строу. Успехи прикладной физики, 2019, т. 7, №1, С. 76-84
- 15. А.Д. Волков. Устройство для измерения натяжения трубки в строу детекторах. Патент 2539107 (2013).
- 16. Волков А.Д., Кравченко М.Д., Павлов А.В. Устройство для исследования свойств строу трубки координатного детектора частиц. Патент 2691770 (2019) 28
- 17. N. Tsverava et al. Thin-wall straw tubes for experiment COMET (in preparation).

- 18. COMET Phase-I. Technical Design Report 2018 (prepared with participation of the JINR physicists).
- H. Nishiguchi, P. Evtoukhovitch, A. Moiseenko, Z. Tsamalaidze, N. Tsverava, A. Volkov, et al. Development of an extremely thin-wall straw tracker operational in vacuum- The COMET straw tracker system. Accepted NIM, V845, 2017. Pages 269-272
- Kazuki Ueno, Peter Evtoukhovitch, Anatoly Moiseenko, Eitaro Hamada, Takashi Saito, Nikolozi Tsverava, Kou Oishi, Alexander Samartsev, Hajime Nishiguchi, Zviadi Tsamalaidze Development of a thin-wall straw-tube tracker for COMET experiment. PoS EPS-HEP2017 (2017) 524
- H. Nishiguchi, P. Evtoukhovitch, Y. Fujii, E.Hamada, S. Mihara, A. Moiseenko, Z. Tsamalaidze, N. Tsverava, A. Volkov, et al. Development of an extremely thin-wall straw tracker operational in vacuum – The COMET straw tracker system. NIM. A845 (2017) 269-272.
- 22. H. Nishiguchi, P. Evtoukhovitch, A. Moiseenko, Z. Tsamalaidze, N. Tsverava, A. Volkov, et al. Construction on vacuum-compatible straw tracker for COMET Phase-I. Accepted NIM, 2019.

CLFV Schedule in the near future

Searches of Charged-Lepton Flavor Violation in Experiments using Intense Muon Beams

Summary

- > The COMET is a search experiment for μ -e conversion at J-PARC
 - aiming improvement the sensitivity x 10,000 better than the past limit, $1.0 \cdot 10^{-17}$
 - staging approach called Phase-I (under construction) / Phase-II
- COMET Phase-I is now under construction
 - aiming improvement the sensitivity x 100 better than the past

Phase-I Goal:

(in 150 days operation)

 $B(\mu^{-} + Al \to e^{-} + Al) = 3.0 \times 10^{-15} \text{ (S.E.S)}$ $B(\mu^{-} + Al \to e^{-} + Al) < 7 \times 10^{-15} \text{ (90\%C.L.)}$

Up to $10^{-15} \rightarrow \text{sensitive}$ to "new physics"

- CDC detector for physics search is under construction now
- the other system is also under construction
- We plan to be **ready in 2022.**
- In parallel preparation and carrying out Phase-I, will go work on creation of a full muon bunch, R&D for COMET Phase-II is underway. After completion of Phase-I, will immediately begin installation and assembly for Phase-II. Expecting to start in 202X?
- > JINR plays a visible role in preparation of this experiment of fundamental importance.

Estimation of costs and resources

Proposal for resources necessary for realization of the project "Search for coherent neutrino-less μ -e conversion at J-PARC (COMET) ", 2021-2023

						For	n №20
Units and systems of The setup, resources, Sources of financing		ystems of resources, financing	Cost of units (k\$). Required resources	Laboratory proposal for schedule of financing and re- sources			
				1 year	2 year	3 year	
M ai n it e m s	Comp Electr Mater	outers onic devices ials	30 120 180	10 400 60	10 40 60	10 400 60	
R e s o u rc e s	H o ur s	Design bureau DLNP Workshop	800 hours 1200 hours	300 500	300 500	200 200	
S o u r c	B u d ge t	Budget expenses (without salary)	660	220	220	220	
e o f f	N o n- b	Grant of the Pleni- potentiary of Geor- gia	30	10	10	10	
i n a	u d ge	Program of the JINR-Belarus Co- operation.	15	5	5	5	
n c i n g	Ţ	Grant of the Plenipo- tentiary of Kazakh- stan	30	10	10	10	32

				Form
N Purpose of expenses from DLNP	Full cost	1 st year	2 nd year	3 rd year
N				
Direct expenses				
1 A applanator				
1. Accelerator	-	-	-	-
2. Computing	-	-	-	-
3. Design bureau	800 hours	300	300	200
4. Workshop LNP	1200 hours	500	500	200
5. Materials	180 k\$	60	60	60
6. Equipment	150 k\$	50	50	50
7. COMET operation fee	60 \$	20	20	20
8. Business trips:				
a) To the non-rouble	255 k\$	85	85	85
zone countries				
b) To the cities of rouble zone	15 k\$	5	5	5
countries				

Thank you for attention!

BACKUP

Demonstration of the Pion Capture System for COMET

It is very important that this is experimental confirmation

A muon beam intensity of 10⁸ muons/sec with a proton beam of 400MeV energy with 1µA beam current from the RCNP proton ring cyclotron. This beam intensity is almost the same as in PSI. 10⁻⁴ muons/proton/GEV for MUSIC, RCNP 10⁻⁷ muons/proton/GEV for PSI The muon production efficiency per proton is about 1000

Mu2e vs. COMET

2021 or	Detector Solenoid Electromagnatic Celorimeter	Detector Solenoid Transport Solenoid Transport Solenoid		2018-2019 Phase-I		
2022	Tracker Tracker Collimators Protuction Soler Protuction Soler Protuction Soler Production Soler Production Soler Production Soler Production Soler Production Soler	nd		better selectio of low	n	
	Mu2e	COMET		momentum muons		
muon beamline	S-shape	C-shape	\rightarrow	eliminate muon deca	av	
electron pectrometer	Straight solenoid	Curved solenoid		in flight	~ 5	
better	selection of	eliminate protons fro	m nuc	lear muon capture.)	
100 M	eV electrons	eliminate low energy junk events to make the 36 detector quiet.				

ICEDUST Study on COMET Phase-II

COMET Phase-II SES sensitivity / $2x10^7$ sec = 2.6 $x10^{-17}$

> J-PARC advantage is 56kW In contrast to 8kW in FERMILAB

COMET Phase-II SES sensitivity / $2x10^7$ sec = 1.0 $x10^{-17}$

Mu2e SES sensitivity / $2x10^7$ sec = 7.5 $x10^{-17}$

Detector single rate: tracker and calorimeter

	Timing	Tracker	Calorimeter	Energy
		(kHz)	(kHz)	(MeV)
DIO electrons	Delayed	10	10	50-60
Back-scattering electrons	Delayed	15	200	< 40
Beam flash muons	Prompt	$< 150^{\ddagger}$	$< 150^{\ddagger}$	15 - 35
Muon decay in calorimeter	Delayed		$< 150^{\ddagger}$	< 55
DIO from outside of target	Delayed	< 300	< 300	< 50
Proton from muon capture	Delayed			
Neutron from muon capture	Delayed		10	~ 1
Photons from DIO e^- scattering	Delayed	150	9000	$\langle E \rangle = 1$

Comparison of Phase-I and Phase-II parameters

Parameters	Phase-I	Phase-II
Beam power	3.2 kW (8 GeV)	56 kW (8 GeV)
Running time	150 days	1 year
Target materials	graphite	tungsten
#protons	2.37 x 10 ¹⁹	8.5 x 10 ²⁰
#muon stops (Ν _μ)	1.5 x 10 ¹⁶	2.0 x 10 ¹⁸
Muon rate/s	5.8 x 10 ⁹	1.0 x 10 ¹¹
#muon stops/proton	0.00052	0.00052
#BG events	0.032	0.34
The detector acceptance $(A_{\mu-e})$	0.041	0.04
S.E.S (single event sensitivity)	3.1 x 10 ⁻¹⁵	2.6 x 10 ⁻¹⁷
U.L. (upper limit, 90%CL)	< 7.2 x 10 ⁻¹⁵	< 6.0 x 10 ⁻¹⁷
Measurement start	2018-2019	2021

ICEDUST Study on COMET Phase-II

COMET Phase-II SES sensitivity / 2x10⁷ sec = 1.0 x10⁻¹⁷