



## **MPD-ECAL simulation and physics performance**

V. Riabov for the MPD-ECAL Software Group



## MPD, phase-I



- ECAL is one of the key detector subsystems
- Located right behind the ToF subsystem (R = 168-229 cm;  $L = 2 \times 314$  cm)
- Shashlyk-type PbSc calorimeter with projective geometry
- Fine segmentation: 4x4 cm, 38400 towers

## Outline

- Simulation of the MPD-ECAL
- Status of the code
- Basic capabilities and performance parameters
- Near future plans
- Summary

This is no a technical presentation. For technical details please see presentations in the MPD-ECAL software group

Purpose of this presentation is to popularize use of the MPD-ECAL in physics related studies and to demonstrate the basic detector capabilities

#### **MPD-ECAL**, operation conditions

- Compared to calorimeters in other HI collider experiments at RHIC/LHC:
  - ✓ softer signals → bad for resolution,  $\sigma(E) \sim 1/\sqrt{E}$
  - ✓ smaller radius, 2 m vs. ~ 5 m → higher signal density and higher importance of spatial resolution
- UrQMD, AuAu@11, b ~ 1 fm  $\rightarrow$  most central collisions
- Optimistic/realistic estimate of the minimum tower threshold is  $E_{min} \sim 5 \text{ MeV}$
- Occupancy is  $\sim 27\% \rightarrow$  comparable to that in higher energy experiments



# Signal reconstruction and shower merging



- Clusters are reconstructed as groups of towers surrounding a local maximum and touching each other by at least one side
- Small fraction of clusters is reconstructed as stand alone showers
- Others are reconstructed as groups of merged showers. The merged signals are unfolded using the information about the expected shower shapes



 $E_i / \sum E_i : \Delta Mod : \Delta Row$ 



#### Status of the code

- The MPD-ECAL simulation code is in Git and is ready to be used by analyzers
- The default digitizer-clusterizer is in mpdroot/emc/emcKI/
  - $\checkmark$  works with the latest geometry (V3)
  - $\checkmark$  provides the best performance in high multiplicity events
  - ✓ disk space friendly
- The code works and does not add much to the total processing time
- Optimization of the code (better calibrations, more advanced PID selections, consistency checks with the prototype tests etc.) will continue ... permanent process

## **MPD-ECAL output**

- The MPD-ECAL output contains a list of all reconstructed showers/clusters
- For each shower/cluster one can get:
  - ✓ full energy, truncated energies counted in the space region where 99% or 98% of the total energy contribution to the shower is expected to be based on the shower shape
  - $\checkmark$  coordinates of the shower center of gravity: x, y, z, R, phi, theta
  - $\checkmark$  time of flight
  - ✓ track matching: distance to the closest mpdtrack in dphi and dzed (mpdtrack index, dphi, dzed)
  - MC contributors: list of up to five main MC contributors to the shower sorted by energy (mc index, energy deposition)
  - ✓ e/m PID variables: Chi2/NDF, dispersion cuts
  - ✓ list of towers associated with the reconstructed shower (for recalibration and debugging)

## Most common physics tasks

- Photons (yields, flow, correlations):
  - ✓ inclusive
  - ✓ direct
- Neutral mesons (yields, flow):

$$\begin{array}{l} \checkmark \quad \pi^{0}(\eta) \rightarrow \gamma \gamma \\ \checkmark \quad K_{s} \rightarrow \pi^{0} \pi^{0}, \ \omega \rightarrow \pi^{0} \gamma \end{array}$$

- Electron identification,  $E/p \sim 1$  (yields, flow):
  - ✓  $e^+e^-$  continuum
  - ✓ LVM  $(\rho, \omega, \phi) \rightarrow e^+e^-$
  - $\checkmark$  e<sub>HF</sub>
- Hadron identification and rejection by matching/TOF/ShowerShape:
  - ✓  $\pi/K$  separation up to ~ 0.5 ГэB/c
  - ✓ K/p separation up to ~ 1  $\Gamma$  ∋B/c

#### **MPD-ECAL spatial resolution for photons**

- UrQMD, minbias AuAu@11, realistic vertex distribution, selected photons
- Spatial resolution is energy dependent
- Comparable for single photons and photons in high-multiplicity events
- Achieved resolution is good enough → does not significantly affect: (1) the mass
  resolution for neutral mesons in the expected p<sub>T</sub> range of measurements; (2) width of
  track-to-cluster and cluster-to-track matching



~ 180 cm \* tan(0.15 degrees) = 0.5 cm

## **MPD-ECAL energy resolution for** γ/e

- UrQMD, minbias AuAu@11, realistic vertex distribution, selected photons
- Energy resolution is energy dependent,  $\delta E/E \sim 1/\sqrt{E}$
- Energy resolution defines width of the reconstructed  $\pi^0/\eta$ , E/p peaks
- There is still potential for improvement (with better tower-by-tower calibration)



## **Identification of** γ/e

- Photon identification
- ✓ charged track veto  $\rightarrow$  cut on minimum distance to the closest mpdtrack in dphi/dzed
- $\checkmark$  shower shape  $\rightarrow$  compare measured shower shape with the ana expected for a/m signals.



✓ Reduced time of flight →  $T_{photon} = T_{measured} - L/c \sim 0$ , L is a path along a line [vertex → cluster]; effectively rejects signals from low- $p_T$  hadrons (longer flight path, slower); exact ECAL time resolution should be tuned to data, so far the intrinsic time-of-flight resolution is additionally smeared by 500 ps; use only very soft cuts for photon selection,  $T_{photon} < 2$  ns

## Reconstruction of neutral mesons, $\pi^0$

• UrQMD, minbias AuAu@11, realistic vertex distribution





- $\pi^0$  can be reconstructed in a wide  $p_T$  range with a few hundred thousand events
- Reconstructed mass is close to the PDG value
- Reconstructed width of 10-14 MeV/c<sup>2</sup> is defined by the energy resolution at  $p_T < 2$  GeV/c and by spatial resolution at higher momentum

#### Reconstruction of neutral mesons, $\eta$

• UrQMD, minbias AuAu@11, realistic vertex distribution



- $\eta$  can be reconstructed in a wide  $p_T$  range with a few million events
- Reconstructed mass is close to the PDG value
- Reconstructed width of  $\sim 30 \text{ MeV/c}^2$  is totally defined by the energy resolution

#### **Track-to-cluster matching**

- UrQMD; realistic vertex distribution
- Matching in dphi is wider at low  $p_T$  due to track bending in the magnetic field
- Matching distributions are to be parameterized as a function of charge and  $p_T$
- Parameterized mean(p<sub>T</sub>) and sigma(p<sub>T</sub>) can be used for track matching selections in terms of 'n-sigma deviations'
- Matching distributions show that tracks with  $p_T < 150$  MeV/c do not reach the detector surface
- Worse spatial resolution for hadrons is driven by the fact that the center of gravity for hadrons is uniformly distributed in the depth of the calorimeter



# *e*<sup>±</sup>/h rejection

- UrQMD, minbias AuAu@11, realistic vertex distribution
- E/p, E energy, p momentum:
  - ✓ E/p is meaningful at  $p_T > 200 \text{ MeV/c}$
  - $\checkmark$  E/p ~ 1 at p<sub>T</sub> > 0.5 GeV/c
  - ✓ E/p is rather wide at  $0.2 < p_T < 0.5$  GeV/c, low energy signals break up due to large incident angles (magnetic field)



All tracks **Tracks + TPC-TOF Tracks + TPC-TOF + ECAL-TOF** Tracks + TPC-TOF + ECAL-TOF + ECAL-EtoP



- - ePID/ECAL improves purity of electron sample (e/h) in expense of somewhat smaller efficiency

# Near future plan

- Create ECAL Tutorial/Examples/How-to subsections in the mpdforum ~ 1 week
- Run large centralized MC production for 10 million events  $\rightarrow$  setup in ~ 1-2 weeks
- Unite the MPD-ECAL software group and PWG4, studies become more physics oriented → beginning of the next year

# Summary

- ✓ The MPD-ECAL simulation code is now available for public use
- ✓ Basic ECAL performance parameters are known, please think how to use the detector in your physics studies
- ✓ ECAL simulation support and electromagnetic signal studies will be available in PWG4 starting from the next year
- $\checkmark$  Consider to join if you are interested



