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The mystery of dark matter:

The hypothesis of its existence provides a good �t to evidence

in a wide range of scales �

from the galactic scale (rotation curves)

to the cosmological one (the formation of cosmic structures and

the prediction of the total mass of the matter in the Universe).

In a framework of the ΛCDM model � a modern standard model in

cosmology � the properties of the dark matter are close to the

non-relativistic dust-like matter.

However, attempts to detect dark matter (to detect its interaction

with regular matter) are still unsuccessful!
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Maybe, dark matter doesn't genuinely exist,

but it is an e�ect of a description of the gravitational interaction?

Possible modi�cations of gravity:

• MOND (Modi�ed Newtonian Dynamics),

• f (R) gravity,

• scalar-tensor gravity,

• mimetic gravity,

• embedding gravity;

• . . .

In order to be able to explain all e�ects related to the dark matter,

the modi�ed gravity should contain a su�cient number of degrees

of freedom!

S.A. Paston (SPbSU) Dark matter with a nontrivial motion as... 3 / 29



Maybe, dark matter doesn't genuinely exist,

but it is an e�ect of a description of the gravitational interaction?

Possible modi�cations of gravity:

• MOND (Modi�ed Newtonian Dynamics),

• f (R) gravity,

• scalar-tensor gravity,

• mimetic gravity,

• embedding gravity;

• . . .

In order to be able to explain all e�ects related to the dark matter,

the modi�ed gravity should contain a su�cient number of degrees

of freedom!

S.A. Paston (SPbSU) Dark matter with a nontrivial motion as... 3 / 29



Mimetic gravity

S = SEH[g(...)] + Sm[g(...)], SEH = − 1

2κ

∫
d4x
√
−g R (1)

gµν = g̃µν g̃
αβ(∂αϕ)(∂βϕ)

(
⇒ gµν(∂µϕ)(∂νϕ) ≡ 1

)
(2)

Gµν − κ Tµν = κρ(∂µϕ)(∂νϕ), Dµ(ρgµν∂νϕ) = 0,

ρ ≡ 1

κ
gµν(Gµν − κ Tµν) (3)

(A.H. Chamseddine, V. Mukhanov, JHEP, 2013:11 (2013), 135, arXiv:1308.5410)

Equivalent formulation in the form of GR with additional �ctitious

(dark?!) matter:

S = SEH + Sm + S+ (4)

S+ = −1

2

∫
d4x
√
−g ρ

(
1− gµν(∂µϕ)(∂νϕ)

)
(5)

(A. Golovnev, Phys.Lett.B, 728 (2014), 39, arXiv:1310.2790)
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Looking at the form of equations

Gµν = κ
(
Tµν + ρ(∂µϕ)(∂νϕ)

)
, Dµ(ρgµν∂νϕ) = 0 (6)

we can see that ρ � is the density of the �ctitious matter and its

velocity is

uµ = ∂µϕ, (7)

which means that the matter moves potentially.

Not enough degrees of freedom!
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Complications of mimetic gravity

Modi�cation of the action for �ctitious matter:

S+ = −1

2

∫
d4x
√
−g
(
ρ
(
1−gµν(∂µϕ)(∂νϕ)

)
−V (ρ)+

1

2
γ(ρ) (�ρ)2

)
(8)

(A. Chamseddine, V. Mukhanov, A. Vikman, JCAP, 2014:06 (2014), 017, arXiv:1403.3961;

L. Mirzagholi, A. Vikman, JCAP, 2015:06 (2015), 028, arXiv:1412.7136)

Modi�cation of the mimetic change of variables:

S = SEH[g(...)] + Sm[g(...)] (9)

gµν = g̃µν g̃
γδ (∂γϕ+ α∂γβ) (∂δϕ+ α∂δβ) (10)

uµ = ∂µϕ+ α∂µβ (11)

(S. P., Phys. Rev. D 96 (2017) 084059, arXiv:1708.03944)
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Embedding gravity

S = SEH[g(...)]+Sm[g(...)], SEH = − 1

2κ

∫
d4x
√
−g R, (12)

gµν = ηab(∂µy
a)(∂νy

b), (13)

where a, b = 0, . . . , 9.
(T. Regge, C. Teitelboim, "General relativity a la string: a progress report",

Proceedings of the First Marcel Grossmann Meeting (Trieste, Italy, 1975),

1977, p. 77, arXiv:1612.05256)

The simple geometric sense � a metric becomes the induced metric

of a 4-dimensional surface in the ambient space which is described

by the embedding function ya(xµ).
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The original idea of embedding theory is to rewrite the GR in a way

similar to the String theory with the hope that the quantization

procedure will improve.

But � there are extra solutions!

Equation of motion (Regge-Teitelboim equations)

Dµ
(

(Gµν − κ Tµν) ∂νy
a
)

= 0 (14)

Regge and Teitelboim: introduce ad hoc additional constraint

Gµ0 − κ Tµ0 = 0 (15)
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The Regge-Teitelboim equations can be rewritten in the form of

Einstein's equations with additional contribution τµν �

EMT of the �ctitious (dark?!) matter:

Gµν = κ (Tµν + τµν) , Dµ
(
τµν∂νy

a
)

= 0 (16)

(M. Pavsic, Class. Quant. Grav., 2 (1985), 869, arXiv:1403.6316)
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The corresponding action can be written as

S = SEH + Sm + S+, (17)

where

S+ =
1

2

∫
d4x
√
−g
(

(∂µy
a)(∂νy

b)ηab − gµν
)
τµν , (18)

(S. P., Phys. Rev. D, 96 (2017), 084059, arXiv:1708.03944)

if dark matter is described by variables ya and τµν ;

or

S+ =

∫
d4x
√
−g
(
jµa ∂µy

a − tr
√

gµν jνa η
abjαb

)
, (19)

(S. P., A. Sheykin, Eur. Phys. J. C, 78: 12 (2018), 989, arXiv:1806.10902)

if, besides ya, some currents jµa are chosen to be independent

variables that describe dark matter.
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It is these currents that turn out to be conserved due to one of the

equations of motion:

Dµj
µ
a = 0 ⇔ ∂µ

(√
−g jµa

)
= 0, jµa = τµν∂νya (20)

If we assume that all these currents are non-relativistic in the

ambient space:

jµa = δ0a j
µ + δjµa , δjµa → 0, (21)

then it will bring us to the non-relativistic limit of embedding

theory, where the �ctitious matter appears non-relativistic as well.
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In this limit the action corresponding to the dark matter (19)

transforms into the action

S+ =

∫
d4x
√
−g
(
jµ∂µy

(0) −
√
jµgµν jν

)
(22)

It describes dust matter with potential motion.

However, this limit is singular, as one of the equations of motion

has the form

∂µy
a = β−1µν j

νa, βµ
α =

√
gµν jνa η

abjαb (23)
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Embedding theory in a weak gravity limit

Weak gravity:

gµν = ηµν + δgµν , δgµν � 1 (24)

One should pick a corresponding embedding function

ya(x) = ȳa(x) + δya(x) (25)

The embedding of the metric of Minkowski space should play the

role of the background ȳa(x). Note that the choice is not unique!

The simplest option � 4-dimensional plane � leads to

non-linearizability of the Regge-Teitelbboim equations and to

non-linearity of the relation between δgµν and δya.
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The variation of the metric in the linear approximation:

gµν = (∂µy
a)(∂νya) ⇒

⇒ δgµν = (∂µδy
a)(∂νya) + (µ↔ ν) =

=
(
∂µ(δya‖ + δya⊥)

)
(∂νya) + (µ↔ ν) =

= Dµξν + Dνξµ − 2δy⊥ab
a
µν , (26)

where ξµ = δya‖ ∂µya, and baµν = Dµ∂νy
a � second fundamental

form of the surface.

The linearity of the relation between δgµν and δya requires

rank baµν = 6, (27)

i.e. the property of unfoldness of the embedding.

The background should be unfolded embedding of the Minkowski

metric. Examples of such embeddings may be found in

(S. P., T. Zaitseva, Universe, 7:12 (2021), 477, arXiv:2111.04188)
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The unfolded background leading to the non-relativistic motion of

the �ctitious matter is:

ȳ0 = x0, ȳ I = ȳ I (x i ), (28)

where ȳ I (x i ) � is unfolded embedding R3 into R9.

The embedding functions ya(x) for the corresponding

4-dimensional surface in the leading order w.r.t. 1/c have form

y0 = x0 +
1

c
ψ

(
x0

c
, x i
)

+ o

(
1

c2

)
,

y I = ȳ I
(
x0

c
, x i
)

+
1

c2
ᾱlmI

(
1

2
(∂lψ)(∂mψ)− ϕδlm

)
+o

(
1

c2

)
, (29)

where

ᾱik
L = ᾱki

L , ᾱik
L ∂mȳ

L = 0, ᾱik
L b̄

L
lm =

1

2

(
δil δ

k
m + δimδ

k
l

)
(30)
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Non-relativistic equations of motion of the �ctitious matter in the

leading order w.r.t. 1/c have form

∂t ȳ
I = γI , ∂tψ = ϕ+

1

2
γIγI , ∂t ρ̄τ = −∂i

(
ρ̄τv

i
τ

)
,

ρ̄τ
(
∂t + v iτ∂i

)
vmτ =

=−ρ̄τ∂mϕ+∂l

(
ρ̄τ

[
v lτv

m
τ + ᾱlm

L

(
ᾱik
L

(
(∂iγ

I )(∂kγ
I ) + ∂i∂kϕ

)
+ 2v iτ∂iγ

L

)])
, (31)

where γI = (∂k ȳ
I )∂kψ + ᾱik

I ∂i∂kψ, and ϕ � is a Newtonian

gravitational potential corresponding to matter distribution with

the density ρ+ ρ̄τ .

The parameters describing the �ctitious matter are:

density ρ̄τ , velocity v iτ , and also the quantity ψ and 3 additional

functions parametrizing the embedding ȳ I (x i ) of the �at metric.

The self-interaction is in place!

(S. P., Universe, 6:10 (2020), 163, arXiv:2009.06950)
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Core-cusp problem

Observations generally show a smooth density distribution at the

centers of galaxies � core:

while numerical simulations result in an increase

ρ(r) ∼ rα, α ≈ −1 in density at the center � cusp:

which corresponds to the gravitational potential
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The relation between density pro�le and particles distribution function

We consider a spherically symmetric and static on average

distribution of particles.

Density ρ(x) is related with the gravitational potential ϕ(x) by:

∂k∂kϕ(x) = 4πGρ(x) (32)

Finite motion can be closed and open as well:

~τO ~τO

It is de�ned by normalized energy ε = E/m and angular momentum

`k = Lk/m with addition of a vector τk and initial phase γ.
A motion of a single particle is given by the function x̂i (t, ε, `k , τl , γ) .
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The distribution function of particles f :

dN = f (ε, `k , τl , γ) dε d3` dτ dγ (33)

Then the density can be written as:

ρ(xi ) = m

∫
dε d3` dτ dγ f (ε, `k , τl , γ) δ (xi − x̂i (t, ε, `k , τl , γ)) (34)

Taking stationarity into account we have

ρ(r) =
m

4πr2T

∫
dε d3` dτ dγ f (ε, `k , τl , γ)×

×
∫
Sr

d2x

T∫
0

dt δ (xi − x̂i (t, ε, `k , τl , γ)) =

=
m

4πr2T

∫
dε d3` dτ dγ f (ε, `k , τl , γ)

n

|vr |
(35)

for the radial distribution.
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In the spherically symmetric �eld, the energy

E =
m

2

(
v2r + v2τ

)
+ mϕ(r) (36)

is conserved as well as the angular momentum. Therefore,

|vr | =

√
2ε− 2ϕ(r)− `2

r2
, since L = mrvτ . (37)

At large T

n (ε, `, r) ≈ 2T

T̂ (ε, `k)
θ

(
2ε− 2ϕ(r)− `2

r2

)
, (38)

which leads to

ρ(r) =
m

2πr2

∫
dε d3`

f (ε, `k) θ
(
2ε− 2ϕ(r)− `2

r2

)
T̂ (ε, `k)

√
2ε− 2ϕ(r)− `2

r2

, (39)

where

f (ε, `k) =

∫
dτ dγ f (ε, `k , τl , γ) (40)
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Integrating over all directions of the vector `k , we obtain:

ρ(r) =
m

2πr2

∫
dε

∞∫
0

d`
f̂ (ε, `) θ

(
2ε− 2ϕ(r)− `2

r2

)
T̂ (ε, `)

√
2ε− 2ϕ(r)− `2

r2

(41)

Let's discuss the behavior of the ρ(r) at r → 0.

The only contribution comes from the area ` 6 r
√
2ε− 2ϕ(r), so

the asymptotic of the ρ(r) at r → 0 is de�ned by the asymptotic at

`→ 0 of the functions in the integral.

Function T̂ (ε, `) has �nite limit, while for f̂ (ε, `) several cases are

possible:

Case 1) f̂ (ε, `) ≈ f̂ (ε, 0) + f̂ ′(ε, 0)` c f̂ (ε, 0) 6= 0 for some ε

Case 2) f̂ (ε, `) ≈ f̂ ′(ε, 0)` for all ε

Case 3) f̂ (ε, `) not analytical w.r.t. `
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Performing a change of variables ` = r ˜̀ in the integral, we obtain:

Case 1)

ρ(r) =
m

2πr

∫
dε d ˜̀

f̂ (ε, 0) θ
(
2ε− 2ϕ(r)− ˜̀2

)
T̂ (ε, 0)

√
2ε− 2ϕ(r)− ˜̀2

=
m

4r

∫
dε

f̂ (ε, 0)

T̂ (ε, 0)
(42)

which gives cusp-pro�le ñ α = −1, ò.å. ρ(r) ∼ 1/r .

Case 2)

ρ(r) =
m

2π

∫
dε d ˜̀

f̂ ′(ε, 0)˜̀θ
(
2ε− 2ϕ(r)− ˜̀2

)
T̂ (ε, 0)

√
2ε− 2ϕ(r)− ˜̀2

=

=
m

2π

∫
dε

f̂ ′(ε, 0)

T̂ (ε, 0)

√
2ε− 2ϕ(r) (43)

which gives core-pro�le.
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Asymptotic of the distribution function at `→ 0

Situation A) � a formation of the static structure takes place in a

preliminary given spherically symmetric potential.

Possible realization � the spherically symmetric potential is already

created by the dark matter and we consider a formation of a static

structure of the regular matter inside this potential.
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Spherical symmetry =⇒ the angular momentum is conserved

=⇒ the distribution function f (ε, `k) doesn't change with time

and it is enough to �nd it at the initial moment.

Using the distribution function χ(xi , vk) of particles over its

coordinates xi and velocities vk , we have

f (ε, `k) =

∫
d3x d3v χ(xi , vi )δ(`i−εiklxkvl)δ

(
ε− v2

2
− ϕ(xi )

)
(44)

If we assume spherical symmetry and take `k = (`, 0, 0), we �nd

f (ε, `k) =
1

`

∫
dx2 dx3 dv2 dv3

[
χ(xi , vi )δ

(
ε− v2

2
− ϕ(xi )

)]∣∣∣∣
x1=v1=0

×

×δ(`− x2v3 + x3v2) (45)

Here coe�cient at 1/` has a �nite limit at `→ 0, which is true

even without spherical symmetry.

S.A. Paston (SPbSU) Dark matter with a nontrivial motion as... 24 / 29



As a result for

f̂ (ε, `) =

∫
S`

d2` f (ε, `k) (46)

at `→ 0 we have f̂ (ε, `) ≈ C (ε)`, i. e. Case 2) takes place,

and hence, the core-pro�le will arise.
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Situation B) � the formation of the static distribution in the given

potential with the symmetry reduced to the axial symmetry.

A possible realization � the potential with axial symmetry already

formed by the dark matter and we consider the formation of the

static structure from ordinary matter inside this potential. Such

symmetry agrees better with the observed galaxies.

Due to the lack of spherical symmetry, the previously mentioned

description of particles' trajectories in terms of parameters

ε, `k , τl , γ will no longer be exact, but approximate, and not all of

these parameters will be conserved with time.
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Making the change of variables in (39) we obtain

ρ(r) =
mr

2π

∫
dε d3 ˜̀

f (ε, r ˜̀
k) Θ

(
2ε− 2ϕ(r)− ˜̀2

)
T̂
(
ε, r ˜̀

k

)√
2ε− 2ϕ(r)− ˜̀2

, (47)

hence

ρ(r) ∼ r f (ε, r ˜̀
k) (48)

With axial symmetry only `3 is conserved and the distribution

f (ε, `k) of particles over `|| ≡ `1,2 can change but only in a way

that the value ∫
d2`|| f (ε, `k) (49)

is preserved.

As a result, the fastest growth of f (ε, `3, `||) ∼ 1/`β|| , with β < 2,

and hence we can have weak cusp-pro�le ρ(r) ∼ rα with α > −1.
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Situation C) � the formation of the static distribution in a

completely reduced symmetry or the gravitational potential forms

simultaneously with the static structure and signi�cant deviations

from spherical symmetry are possible in this process.

Possible realization � we consider a formation of the static

structure of the dark matter particles. Such a setup corresponds to

numerical simulations.
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Since no exact symmetry presents, the distribution f (ε, `k) over all

components `k will change in time conserving only the value∫
d3` f (ε, `k) (50)

As a result, the fastest growth of f (ε, `k) ∼ 1/`β , with β < 3, and

hence we have strong cusp-pro�le ρ(r) ∼ rα with α > −2.

If we assume that f̂ (ε, `) is analytical

f̂ (ε, `) ≈ f̂ (ε, 0) + f̂ ′(ε, 0)`, (51)

then case 1) takes place and cusp-pro�le with α = −1 arise, i.e.

ρ(r) ∼ 1/r .

(A. Kapustin, S. Paston, arXiv:2207.04288)
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