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Plan of presentation :
1) Introduction
2) Method of equation constructing

3) First order analysis
4) Kinetic equations and solution
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Introduction

Study of quantum field theory dynamics over strong field backgrounds
demands consideration of correlation functions over quantum states
with non—zero anomalous quantum expectation values. By this we
mean such value :

Tr[;\)aqaq/] = (aqaq’) (1)

In fact, even for zero initial values anomalous averages are generated
dynamically in loop corrections over strong background fields. This
happens e.g. in expanding universe, during collapse process, in the

presence of strong electric fields. Furthermore, anomalous averages play
the key role in BCS theory.
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Formulation of the problem

We consider four-dimensional real massive selfinteracting scalar field
theory in flat space—time:

1 , m? Ay
L= 5(8u90) B 90 @SO (2)

To have an analytic headway we consider spatially homogeneous states :

(adaq) ~n36(d—q) (3)
(agag) ~ X4 8(3 + ) (4)
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Mode decomposition

We work with the standard mode decomposition:

d3p ei(ﬁ)?—ept) e—i(ﬁ)?—ept)
t) = g = /p2 2
o) /(%)3 [ap Ve T a0 T VRIS
()

and consider dynamics of such initial state:

<aa“aq/> = ngé (@—d) and (aqay)= ng (@+d). (6)
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In - state

Example of such initial state, which satisfies Wick’s theorem, is thermal

state for 7 wrong” mode decomposition :

fg(t, X)

2¢p

d3p f5(t, x)
t) = by 22 b
QO(X, ) /(27‘(‘)3 [ b 2€p + P ’

where:

f,(t,x) = upei(ﬁi_ept) + Vpe—i(ﬁz—gpt)_
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Evolution

We describe evolution with the Heisenberg’s equations:

% <a;raq/> = i< {Hmt(t), agaq/} >, %(aqaq/> = i< [Hine (), agay | > (9)
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First order

Equations in the first order of coupling constant :

dng _ iA d®p ( —2i(eqtep)t x % 2i(eqtep)t
Ta 2 TP I (ixpe qP—XXeqp)+
dt 2 /4(27\')36qep atp arp

(1+ an)(qufzieqt _ X;e2isqt) n (X;qu2i(€q75q)t _ przem(sqfep)t)]’ (10)
dxq _ —iA d®p x 2i(eqtep)t 2i(eq—ep)t
—_— = —— | 2xq(1 + 2np) + (1 + 2nq)x,€ ATPIY + (1 + 2ng)xpe 4= P
a6 3 / 1@m)Peqen al p) + ( a)Xp ( a)Xp
+(1+ an)(l + 2np)62i5qt + 2)(q)<;e2i51"t + 2qupe72ifpt:| . (11)
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Mass renormalization

Considering n and y as slow functions, we neglect oscillating terms and
obtain:

dxq —iA / d®p
= 2(14+2 . 12
Eq dt Xq 2 4(27T)36p ( + np) ( )

Which is nothing but mass renormalization.
Therefore there is not qualitative dynamics.
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Constructing of kinetic equations

The next step is to obtain kinetic equations. Now we write Heisenberg’s
equations twice, once again for the RHS of (9). One of the terms for
example:

A gatation) =i ), ofobadian] ) (03
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Kinetic equations

Finally we obtain:

d 22 [ d®p1d®pad®ps 4
€q —ng = — ———— 3§ (q+p, —p, —p,)X
Gap @ 16 / (2m)9 €1€e0e3 @ =1 =2 *3)
X [(1+nq)(1+n1)n2n3 7nqn1(1+n2)(1+n3)], (14)

d A2 [ d®p1d®padips
€q —Xq = — ————§d (a+p, —p, —p,)X
T 16/ (27)9 €1€eg€3 @ =1 =2 *3)
x{xa [+ n1)nang = n1(1+n2)(1 +n3)| +2x7x2x8 [nq — (1+1q)] }- (15)
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Near the equilibrium

Near the equilibrium and for the small y , linearize the last equation:

A2 [ d%p1d®padps
Xamxa = [ SRS sh g p —p, —p,) [(1+ n1)nong —mi(1+n2)(1+ng)]. (16)
(2m)9 eqeze3 - -t =2 =3

o 3
9 dt 16
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Solution and Conclusions

Finally we obtain :

—Tgt
Xq(t) = Cge™ ¢, (17)
where [ > 0:
A2 [ a®p1d3pad®ps
eqlq = T m54(3+gl -p, 723) [n1(1+n2)(1+n3)7(1+n1)n2n3]. (18)

As we can see y relaxes down to zero, so thermalization has a place to
be even for states with non—zero (but small) anomalous averages.
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Thank you for your attention!

— MQFT 2022 iod0202a 14714



