Quantum-quasiclassical analysis of CM nonseparability in atom due to relativistic effects stimulated by laser field

Vladimir S. Melezhik

Bogoliubov Laboratory of Theoretical Physics JINR, Dubna

supported by Grant of Russian Science Foundation No. 20-11-20257

MQFTP-22, St-Petersburg, 10-14 October 2022

quantum-quasiclassical approach - idea

 $\mathbf{P} = \mathbf{M}\mathbf{V} \gg \mathbf{p} = \mathbf{m}\mathbf{v}$

$$\begin{split} i\hbar\frac{\partial}{\partial t}|\psi(\mathbf{r},t)\rangle &= [H_0(\mathbf{r}) + V(\mathbf{r},\mathbf{R}(t))]|\psi(\mathbf{r},t)\rangle\\ H_{cl}(\mathbf{P},\mathbf{R},t) &= \frac{\mathbf{P}^2}{2M} + \langle\psi(\mathbf{r},t)|V(\mathbf{r},\mathbf{R}(t))|\psi(\mathbf{r},t)\rangle\\ &\frac{d}{dt}\mathbf{P} = -\frac{\partial}{\partial\mathbf{R}}H_{cl}(\mathbf{P},\mathbf{R},t)\\ &\frac{d}{dt}\mathbf{R} = \frac{\partial}{\partial\mathbf{P}}H_{cl}(\mathbf{P},\mathbf{R},t) \end{split}$$

VOLUME 84, NUMBER 9PHYSICAL REVIEW LETTERS28 FEBRUARY 2000

Quantum Energy Flow in Atomic Ions Moving in Magnetic Fields

V. S. Melezhik^{1,*} and P. Schmelcher²

K. J. McCann and M. R. Flannery, Chem. Phys. Lett. **35**, 124 (1975); J. Chem. Phys. **63**, 4695 (1975). G. D. Billing, Chem. Phys. **9**, 359 (1975).

quantum-quasiclassical approach - results

VOLUME 84, NUMBER 9

PHYSICAL REVIEW LETTERS

28 February 2000

Quantum Energy Flow in Atomic Ions Moving in Magnetic Fields

V. S. Melezhik^{1,*} and P. Schmelcher²

PHYSICAL REVIEW A **69**, 032709 (2004)

Stripping and excitation in collisions between p and $\text{He}^+(n \leq 3)$ calculated by a quantum time-dependent approach with semiclassical trajectories

Vladimir S. Melezhik,^{1,*} James S. Cohen,² and Chi-Yu Hu¹

quantum-quasiclassical approach - results

VOLUME 84, NUMBER 9

PHYSICAL REVIEW LETTERS

28 February 2000

Quantum Energy Flow in Atomic Ions Moving in Magnetic Fields

V. S. Melezhik^{1,*} and P. Schmelcher²

PHYSICAL REVIEW A **69**, 032709 (2004)

Stripping and excitation in collisions between p and He⁺($n \le 3$) calculated by a quantum time-dependent approach with semiclassical trajectories

Vladimir S. Melezhik,^{1,*} James S. Cohen,² and Chi-Yu Hu¹

Hyperfine Interactions **138:** 351–354, 2001. Recent Progress in Treatment of Sticking and Stripping with Time-Dependent Approach VLADIMIR S. MELEZHIK^{1,2}

quantum-quasiclassical approach - results

VOLUME 84, NUMBER 9

PHYSICAL REVIEW LETTERS

28 February 2000

Quantum Energy Flow in Atomic Ions Moving in Magnetic Fields

V.S. Melezhik^{1,*} and P. Schmelcher²

PHYSICAL REVIEW A 69, 032709 (2004)

Stripping and excitation in collisions between p and He⁺($n \le 3$) calculated by a quantum time-dependent approach with semiclassical trajectories

Vladimir S. Melezhik,^{1,*} James S. Cohen,² and Chi-Yu Hu¹

Hyperfine Interactions 138: 351–354, 2001. Recent Progress in Treatment of Sticking and Stripping with Time-Dependent Approach VLADIMIR S. MELEZHIK^{1,2}

PHYSICAL REVIEW A 103, 053109 (2021)

Improving efficiency of sympathetic cooling in atom-ion and atom-atom confined collisions

Vladimir S. Melezhik^{®*}

$$i\hbar\frac{\partial}{\partial t}|\psi(\mathbf{r},\mathbf{R},t)\rangle = [H_0(\mathbf{r}) + V(\mathbf{r},\mathbf{R}(t))]|\psi(\mathbf{r},\mathbf{R},t)\rangle$$

$$H_0(\mathbf{r}) = \frac{p^2}{2\mu} - \frac{1}{r} - E_0(T)\cos(\omega t)x + \alpha[...]$$

$$i\hbar \frac{\partial}{\partial t} |\psi(\mathbf{r}, \mathbf{R}, t)\rangle = [H_0(\mathbf{r}) + V(\mathbf{r}, \mathbf{R}(t))] |\psi(\mathbf{r}, \mathbf{R}, t)\rangle$$
$$H_0(\mathbf{r}) = \frac{p^2}{2\mu} - \frac{1}{r} - E_0(T)\cos(\omega t)x + \alpha[...]$$

 $V(\mathbf{r}, \mathbf{R}) = -\alpha \omega E_0(T) \sin(\omega t) [xZ(t) + zX(t)] - \alpha E_0(T) \cos(\omega t) X(t) p_z$

$$i\hbar \frac{\partial}{\partial t} |\psi(\mathbf{r}, \mathbf{R}, t)\rangle = [H_0(\mathbf{r}) + V(\mathbf{r}, \mathbf{R}(t))] |\psi(\mathbf{r}, \mathbf{R}, t)\rangle$$
$$H_0(\mathbf{r}) = \frac{p^2}{2\mu} - \frac{1}{r} - E_0(T)\cos(\omega t)x + \alpha[...]$$

 $V(\mathbf{r}, \mathbf{R}) = -\alpha \omega E_0(T) \sin(\omega t) [xZ(t) + zX(t)] - \alpha E_0(T) \cos(\omega t) X(t) p_z$

how integrate 6D TDSE ? !!!

how integrate 6D TDSE ? !!!

$$i\hbar\frac{\partial}{\partial t}|\psi(\mathbf{r},\mathbf{R},t)\rangle = [H_0(\mathbf{r}) + V(\mathbf{r},\mathbf{R}(t))]|\psi(\mathbf{r},\mathbf{R},t)\rangle$$

A. Bray, U. Eichmann, S. Patchkovskii, PRL 124 (2020)

With additional artificial trapping potential the problem was reduced to effective 3D

They proposed to use CM-velosity spectroscopy as a «build-in» classical monitoring devise for observing internal quantum dynamics in strong external laser fields

 $\mathbf{P}=\mathbf{M}\mathbf{V}\gg\mathbf{p}=\mathbf{m}\mathbf{v}$

$$\begin{split} i\hbar \frac{\partial}{\partial t} |\psi(\mathbf{r},t)\rangle &= [H_0(\mathbf{r}) + V(\mathbf{r},\mathbf{R}(t))] |\psi(\mathbf{r},t)\rangle \\ H_{cl}(\mathbf{P},\mathbf{R},t) &= \frac{\mathbf{P}^2}{2M} + \langle \psi(\mathbf{r},t) | V(\mathbf{r},\mathbf{R}(t)) |\psi(\mathbf{r},t)\rangle \\ &\frac{d}{dt} \mathbf{P} = -\frac{\partial}{\partial \mathbf{R}} H_{cl}(\mathbf{P},\mathbf{R},t) \\ &\frac{d}{dt} \mathbf{R} = \frac{\partial}{\partial \mathbf{P}} H_{cl}(\mathbf{P},\mathbf{R},t) \end{split}$$

 $M \gg m$

 $\mathbf{P} = \mathbf{M}\mathbf{V} \gg \mathbf{p} = \mathbf{m}\mathbf{v}$

 $\langle \psi(\mathbf{r},t) | \mathbf{r}(t) | \psi(\mathbf{r}),t \rangle \rangle \langle \psi(\mathbf{r},t) | \mathbf{p}(t) | \psi(\mathbf{r},t) \rangle \mathbf{R}(t) \mathbf{P}(t)$

$$\langle |E_{kin}(t)|\rangle = \frac{1}{2T} \int_{-T}^{T} \frac{P^2(t)}{2M} dt \sim \int |P(\omega)|^2 dt \sim \int \{|P_x(\omega)|^2 + |P_y(\omega)|^2 + |P_z(\omega)|^2\} dt$$

$$I = 10^{14} \frac{W}{cm^2} \ \lambda = 800 nm \ T = 5.3 fs$$

$$\mathbf{R}(-T) = \mathbf{P}(-T) = 0$$

$$I = 10^{14} \frac{W}{cm^2} \ \lambda = 800 nm \ T = 5.3 fs$$

$$\mathbf{R}(-T) = \mathbf{P}(-T) = 0$$

$$I = 10^{14} \frac{W}{cm^2} \ \lambda = 800nm \ T = 5.3 fs$$

$$\mathbf{R}(-T) = \mathbf{P}(-T) = 0$$

$$I = 10^{14} \frac{W}{cm^2} \ \lambda = 800nm \ T = 5.3 fs$$

$$\mathbf{R}(-T) = \mathbf{P}(-T) = 0$$

$$I = 10^{14} \frac{W}{cm^2} \ \lambda = 800nm \ T = 5.3 fs$$

$$\mathbf{R}(-T) = \mathbf{P}(-T) = 0$$

$$I = 10^{14} \frac{W}{cm^2} \ \lambda = 800nm \ T = 5.3fs$$

$$\mathbf{R}(-T) = \mathbf{P}(-T) = 0$$

$$E_0(T) = E_0 \exp\{-\frac{t^2}{T^2}\} \exp\{-\frac{\rho^2}{w_0^2}\}$$

$$I = 10^{14} \frac{W}{cm^2} \lambda = 800nm T = 5.3fs$$
$$X(-T) = Z(-T) = 0 , \ Y(-T) = \frac{w_0}{2}$$
$$\mathbf{P}(-T) = 0$$

$$I = 10^{14} \frac{W}{cm^2} \lambda = 800nm T = 5.3fs$$
$$X(-T) = Z(-T) = 0 , \ Y(-T) = \frac{w_0}{2}$$
$$\mathbf{P}(-T) = 0$$

$$E_0(T) = E_0 \exp\{-\frac{t^2}{T^2}\} \exp\{-\frac{\rho^2}{w_0^2}\}$$

 $\hbar\omega$

$$I = 10^{14} \frac{W}{cm^2} \ \lambda = 80nm \ T = 0.52 fs$$

$$\mathbf{R}(-T) = \mathbf{P}(-T) = 0$$

$$I=10^{14}\frac{W}{cm^2}\;\lambda=80nm\;T=0.52fs$$

$$\mathbf{R}(-T) = \mathbf{P}(-T) = 0$$

$$I=10^{14}\frac{W}{cm^2}\;\lambda=80nm\;T=0.52fs$$

$$\mathbf{R}(-T) = \mathbf{P}(-T) = 0$$

$$I = 10^{14} \frac{W}{cm^2} \ \lambda = 80nm \ T = 0.52 fs$$

$$\mathbf{R}(-T) = \mathbf{P}(-T) = 0$$

$$I = 10^{14} \frac{W}{cm^2} \ \lambda = 80nm \ T = 0.52 fs$$

$$\mathbf{R}(-T) = \mathbf{P}(-T) = 0$$

Conclusion & Outlook

• *it was confirmed with quantum-quasicalassical approach*

the correlation between internal and CM dynamics

in hydrogen atom in strong laser fiels

• by using CM-velocity spectroscopy as the «build-up» classical set up we obtain information about internal quantum dynamics of atoms in intense laser fields