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Motivation

Relativisti symmetry assoiates elementary partiles in D-dimensional

spae-time with unitary irreps of the Poinar�e group ISO(1,D−1).

[Pa, Pb] = 0 , [Pa, Mbc ] = i (ηcaPb − ηbaPc) ,

[Mab, Mcd ] = i (ηacMbd − ηbcMad + ηbdMac − ηadMbc) .

Irreps are de�ned as eigenvetors of Casimir operators.

Seond order Casimir operators of iso(1,D−1) is

C2 := PaPa .

In the ase of physially interesting unitary irreduible representations, this

Casimir operator takes the values

PaPa ≥ m2 ,

where m is mass of orresponding states.



D-dimensional Poinare irreps are indued from irreps of stability subgroup.

P2 = m2
Stability subgroup

Massive irreps. m2 6= 0 ompat group SO(D − 1)

Massless irreps. m2 = 0 non-ompat group ISO(D − 2)

Sine stability subgroup is ompat in massive ase, irreduible

representations (orresponding �elds) are �nite-omponent in this ase.

In the massless ase, stability subgroup is non-ompat.

Massless �nite spin (heliity) representations.

In this ase the Eulidean (D − 2)-translations are realized trivially.

Irreps are desribed by usual �nite-omponent �elds.

Massless in�nite (ontinuous) spin representations.

In this ase the Eulidean (D − 2)-translations are realized non-trivially.

Suh irreps desribe a tower of in�nite number of massless states.



In this talk we will onsider massless in�nite (ontinuous) spin representations.

First more detail studies of in�nite spin representations were arried out only

in the 1970s in [J.Yngvason, 1970; G.Iverson, G.Mak, 1971℄.

Next stage of researh on these representations began in fat in the 2000s and

was initiated by [L.Brink, at.al., 2002; J.Mund, at.al., 2004℄ and [X.Bekaert,

J.Mourad, 2006; X.Bekaert, N.Boulanger, 2006℄.

Although physial status of unitary in�nite (ontinuous) spin representations

of the Poinar�e group is still not very lear, interest in them is aused

by an idential spetrum of states of in�nite spin theory and higher-spin

theory [M.Vasiliev, 1989,... and other℄, whih led to the formation of a

ertain researh branh mainly in the ontext of the theory of higher spin

�elds;

by its potential relation to string theory (with in�nite number of physial

states) as andidates for Quantum Gravity Theory.

These properties of ontinuous spin partiles are very attrative.

Lately a lot of researh has been arried out on ontinuous spin partiles [.....℄.



In this talk, I present our study of irreduible massless representations of the

6D Poinar�e group fousing on the in�nite spin representations.

In partiular, in this talk there will be presented twistorial formulation of

D = 6 ontinuous spin representations. As follows from basi hypotheses of

twistor approah, this formulation is an alternative (or additional) to

spae-time formulation, whih is used in most researhes. The obtained twistor

formulation of 6D in�nite spin representations is a ertain generalization of

the twistor formulation of suh representations in 4D ase, whih we found

earlier [I.Buhbinder, SF, A.Isaev, A.Rusnak, 2018-2019℄.

Besides, in this talk there will be presented light-front desription of 6D
in�nite spin �elds. A pleasant bonus in onstruting suh a formulation was

the appearane of harmonis in the theory obtained.

We begin with de�nition of the in�nite (ontinuous) spin representations in

6D Minkowski spae.



Casimir operators and 6D irreduible massless representations

Pa , Wabc = εabcdegPdMeg , Υa = εabcdegPbMcdMeg .

ommute with Pa. Then, the operators

C2 = PaPa , C4 =
1
24

W abcWabc , C6 =
1
64

ΥaΥa

are the seond, fourth and sixth order Casimir operators of iso(1, 5).

C2 = PaPa ,

C4 = ΠaΠa − 1
2

MabMab C2 ,

C6 = −ΠbMba ΠcMca +
1
2

(

MabMab − 8
)

C4

+
1
8

[

McdMcd

(

MabMab − 8
)

+ 2MabMbcMcdMda

]

C2 ,

where

Πa := Pb Mba , [Πa, Πb] = −i Mab C2 .



Eigenvalues of the Casimir operators in massless ase:

Finite spin (heliity) representations.

C2 = C4 = C6 = 0 .

In�nite (ontinuous) spin representations.

C4 = −µ2 , µ 6= 0 .

C6 = −µ2 s(s + 1) ,

where s is �xed (half-)integer number

The �eld desription of D = 6 in�nite spin representations with additional

vetor variables was onsidered in [X.Bekaert, J.Mourad, 2006; X.Bekaert,

N.Boulanger, 2006℄.

Here we propose di�erent �eld desriptions of suh representations.



Twistorial formulation of in�nite spin partile

i) Twistor onsists of two ommuting Lorentz spinors.

ii) Twistors are the phase spae oordinates.

iii) In twistors, momentum operators are expressed as a bilinear ombinations

of twistors.

iv) In twistor spae, onformal symmetry is realized by linear

transformations.



6D twistors

The D=(1 + 5) twistor (A = 1, . . . , 8, I = 1, 2, α = 1, 2, 3, 4)

Z I
A =

(

πI
α

ωβ I

)

(πI
α)

† = ǫIJBα̇
βπJ

β , (ωαI)† = ǫIJω
βJ(B−1)β

α̇

[

πI
α , ωβ

J

]

= iδβαδ
I
J .

The operators ωα
I an be realized by di�erential operators

ωα
I = −i

∂

∂πI
α

.

The quantities X[AB] := Z I
AZ J

BǫIJ form the so(2, 6) ≃ so∗(8) algebra.



Basi properties of the twistor formulation:

Pa = πI
α(σ̃a)

αβπβ I

is light-like PaPa = 0 automatially due to (σ̃a)αβ(σ̃a)
γδ = 2εαβγδ.

The generators Mab of the Lorentz algebra so(1, 5)

Mab = −iπI
α(σ̃ab)

α
β

∂

∂πI
β

.

But, in this one-twistor ase C4 = C6 = 0.

Thus, the one-twistor model desribes only massless �nite spin representations.

For desription of massless in�nite spin irreps it is neessary to use two or

more twistors.



We introdue the seond twistor

Y A
A =

(

λA
α

ηβA

)

.

λA
α , (λA

α)
∗ = ǫABBα̇

βλB
β ; ηαA , (ηαA)∗ = ǫABη

βB(B−1)β
α̇ .

In these expressions, A = 1, 2 � SU(2) index.

[

λA
α , ηβB

]

= iδβαδ
A
B .

ηαA = −i
∂

∂λA
α

.

Physial states are desribed by the 6D two-twistor �eld

Ψ = Ψ(πI
α, λ

A
α) ,

whih is a funtion of upper halves of both twistors.



Twistorial in�nite spin �elds

Bitwistor representation of 6D Poinare algebra

Pa = πI
α(σ̃a)

αβπβ I ,

Mab = −iπI
α(σ̃ab)

α
β

∂

∂πI
β

− iλA
α(σ̃ab)

α
β

∂

∂λA
β

.

Fourth-order Casimir operator

C4 = ΠaΠa = 2
(

ǫαβγδπK
απβKλ

C
γ λδC

)

ǫIJǫAB
(

πI
∂

∂λA

)(

πJ
∂

∂λB

)

.

Twistor equations

a)
(

ǫαβγδπK
απβKλ

C
γ λδC − µ2

)

Ψ = 0 , b)

(

πα I
∂

∂λA
α

− i
2
ǫIA

)

Ψ = 0 .



Six-order Casimir operator

C6Ψ = −µ2 JiJi Ψ ,

where

Ji :=
1
2
πI
α(σi)I

J ∂

∂πJ
α

+
1
2
λA
α(σi)A

B ∂

∂λB
α

The twistor �eld Ψ(π, λ) must obey the following ondition:

JiJi Ψ = s(s + 1)Ψ .

So the quantum number s of in�nite spin irreps oinides with the spin of the

diagonal SU(2) automorphism subgroup.

Twistor �eld with quantum number s an be desribed by means of the

ompletely symmetri 2s rank spin-tensor �eld (Ii are SU(2)-indies)

ΨI1...I2s(π, λ) = Ψ(I1...I2s)(π, λ)

and is represented by an in�nite series in the spinors πI
α and λA

α.



Field twistor transform and spae-time in�nite spin �elds

Field twistor transform links twistor �eld formulation with spae-time one.

For it, we onstrut the �elds

πI1
α1

. . . πI2s
α2s

ΨI1...I2s (π, λ) ,

whih are SU(2) salars.

Then, performing the following integral transform

Φα1...α2s (x , λ) =
∫

µ(π)eixapa πI1
α1

. . . πI2s
α2s

ΨI1...I2s (π, λ) ,

where µ(π) is the integration measure in the �π-spae� and pa = πI
α(σ̃a)

αβπβ I ,

we obtain a ompletely symmetri spae-time �eld Φα1...α2s (x , λ), whih
depends on the spae-time oordinates xa

and additional spinor variables λI
α.



The �eld Φα1...α2s(x , λ) automatially satis�es

i
∂

∂xa (σ̃a)βα1Φα1...α2s = 0 ,
∂

∂xa

∂

∂xa
Φα1...α2s = 0 .

and

(

i
∂

∂xa λK
β (σ̃

a)βγλγK + 2µ2
)

Φα1...α2s = 0 ,

(

i
∂

∂xa

∂

∂λK
β

(σa)βγ
∂

∂λγK
− 2

)

Φα1...α2s = 0 .

In addition, the spae-time �eld Φα1...α2s (x , λ) obeys

λI
β (σi)I

K
∂

∂λK
β

Φα1...α2s = 0 .

Thus, we derive spae-time formulation (with additional spinor variables λI
α)

of the 6D in�nite spin �elds whih is a generalization of our formulation of the

4D in�nite spin �elds.



Light-front desription of 6D in�nite spin �elds

Another spae-time formulation of in�nite spin representations, more

appropriate for light-front �eld desription.

Operator onditions in spae-time formulation

We onsider the representations in the spae of states |Ψ〉 . The basi
operators

xa , pa ; ξI
α , ραI .

(xa)† = xa , (pa)
† = pa , (ξI

α)
† = ǫIJBα̇

βξJ
β , (ραI)† = ǫIJρ

βJ(B−1)β
α̇ ,

[xa, pb] = iδa
b ,

[

ξI
α , ρβJ

]

= iδβαδ
I
J .



In this representation

C4 = − ℓ̃ ℓ ,

ℓ :=
1
2
ραI (paσ

a)αβρ
β I , ℓ̃ :=

1
2
ξI
α(paσ̃

a)αβξβ I .

C6 = −µ2 JiJi ,

Ji :=
i
2
ξI
α(σi)I

JραJ .

In�nite spin states are de�ned by the onstraints

ℓ |Ψ〉 = µ |Ψ〉 , ℓ̃ |Ψ〉 = µ |Ψ〉 ,

JiJi |Ψ〉 = s(s + 1) |Ψ〉 .

We desribe the in�nite spin vetors |Ψ〉 in terms of appropriate �elds.



In�nite spin �elds in the light-one frame

Light-one frame: p0 = p5 = k , pâ = 0 , â = 1, 2, 3, 4 .

Represent SU∗(4) spinors ξI
α, ρ

αI
as:

ξI
α = (ξI

i , ξ
I
i ) , ραI = (ρi

I , ρ
i
I) ,

where i = 1, 2 and i = 1, 2.

In the light-one frame

ℓ̃ = k ǫijǫIJ ξ
I
i ξ

J
j , ℓ = k ǫi jǫ

IJ ρ
i
Iρ

j
J

are written in the form

ǫIJuI
i u

J
j = ǫij , ǫIJv I

i v
J
j = ǫi j ,

uI
i :=

√

2k/µ ξI
i ; v I

i :=
√

2k/µ ρI
i , ρI

i = ǫi jǫ
IJρ

j
J .

(uI
i )

∗ = −ǫIJǫ
ijuJ

j , (v I
i )

∗ = −ǫIJǫ
i jv J

j .



As a result, in light-one frame uI
i and v I

i are elements of the SU(2) groups
and parameterize ompat spae. Analogously to [GIKOS, 1984℄, we will use

the notation:

u1
i = u+

i , u2
i = u−

i , v1
i = v+

i , v2
i = v−

i .

We onsider di�erential realization for last spinor operators:

ρi
I = −i

∂

∂ξI
i

= −i
√

2k/µ
∂

∂uI
i

, ξI
i = i

∂

∂ρ
i
I

= i
√

2k/µ ǫijǫ
IJ ∂

∂v J
j

.

In suh a representation

J± = D±±
u + D±±

v , J3 =
1
2

(

D0
u + D0

v

)

, where

D±±
u := u±

i
∂

∂u∓
i

, D0
u := u+

i
∂

∂u+
i

− u−
i

∂

∂u−
i

are harmoni derivatives [GIKOS, 1984℄.



As a solution to JiJi Ψ = s(s + 1)Ψ we take the highest weight vetor Ψ(2s)
:

J+Ψ(2s) = 0 , (J3 − s)Ψ(2s) = 0 .

This �eld also obeys the onditions

ℓΨ(2s) = µΨ(2s) , ℓ̃Ψ(2s) = µΨ(2s) .

It is natural to present the solution by using δ-funtions:

Ψ(2s)(u±, v±) = δ(ℓ − µ)δ(ℓ̃− µ) Φ(2s)(u±, v±) ,

where the �eld Φ(2s)(u±, v±) satis�es the onditions

a)
(

D++
u + D++

v

)

Φ(2s)(u±, v±) = 0 , b)
(

D0
u + D0

v − 2s
)

Φ(2s)(u±, v±) = 0 .

Equation b) means the U(1) ovariane of the �eld Φ(2s)(u±, v±):

Φ(2s)(e±iϕu±, e±iαv±) = e2siαΦ(2s)(u±, v±) .

The �eld Φ(2s)(u±, v±) is in a one-to-one orrespondene with the funtion on

the oset spae [SU(2)⊗ SU(2)]/U(1).

Note that di�erent type (SUL(2)/UL(1)⊗ SU(2)R/UR(1)) of the
bi-harmoni spae was used in [Ivanov, Sutulin, 1994℄.



General solution

Φ(2s)(u±, v±) =

∞
∑

r=0

Φ
(2s)
k(r) l(r)(u

+, v+) yk(r) l(r) , where

Φ
(2s)
k(r) l(r)(u

+, v+) =

2s
∑

p,q=0,
p+q=2s

φ
i(p) j(q)
k(r) l(r)u

+
i(p)v

+
j(q) .

These expressions use the following onise notation for the monomials:

u+
i(r) := u+

i1
. . . u+

ir
, v+

i(r) := v+
i1
. . . v+

ir
, y i(r)j(r) := y i1 j1 . . . y ir j r .

y i j := ui+v j− − ui−v j+

Thus the �eld Φ(2s)(u±, v±) is a linear ombination with the onstant

oe�ients φ
i(p) j(q)
k(r) l(r) of an in�nite number of basis states u+

i(p)v
+
j(q)yk(r) l(r) and

de�nes the irreduible in�nite spin iso(1, 5) representation in the light-one

frame.



Light-front �eld theory

The light-front [Dira, 1949℄ is de�ned as surfae x+ = (x0 + x5)/
√

2 in 6D
Minkowski spae R

1,5
. Coordinate x+

is interpreted as a "time" evolution

parameter.

The role of the Hamiltonian is played by

H = P− .

In�nite spin �elds in the light-front oordinates have the light-one frame form,

where the oe�ients φ
i(p)i(q)
k(r) l(r) are funtions of x± = (x0 ± x5)/

√
2 and x â

:

Φ(2s)(x±, x â, u±, v±) =

2s
∑

p,q=0,
p+q=2s

∞
∑

r=0

φ
i(p)i(q)
k(r) l(r)(x

±, x â)u+
i(p)v

+
j(q) yk(r) l(r) .

Equation of motion is the Shr�odinger-type equation

(

−i
∂

∂x+
− H

)

Φ(2s)(x±, x â, u±, v±) = 0 , H =
pâpâ

2p+
.



Equation of motion has equivalent form

�Φ(2s)(x±, x â, u±, v±) = 0 , where � := 2
∂

∂x+

∂

∂x−
− ∂

∂x â

∂

∂x â
.

This equation is the equation of motion orresponding to the ation

S =

∫

d 6x du dv Φ̄(−2s)
�Φ(2s) ,

d 6x = dx+dx−d 4x and dudv is bi-harmoni spae measure [GIKOS, 1984℄.

Φ̄(−2s)
� omplex onjugation of Φ(2s)

: Φ̄(−2s) = (Φ(2s))∗ .

Derived harmoni light-front approah opens a possibility to onstrut an

interating theory for 6D in�nite spin �elds. Hamiltonian should go to

H → H + Hint .

To preserve zero harmoni harge of the ation, Hint should have zero

harmoni harge as well. For example, self-interation of harged �elds Φ(2s)
,

s 6= 0 an only be of an even order, suh as ∼ Φ̄(−2s)Φ̄(−2s)Φ(2s)Φ(2s)
.

For �elds with di�erent harges there is an additional hoies similarly as

∼ Φ̄
(−2s)
1

(

Φ
(0)
2 + Φ̄

(0)
2

)

Φ
(2s)
1 or ∼

(

Φ
(q1)
1 Φ

(q2)
2 Φ

(q3)
3 + c.c.

)

at

q1 + q2 + q3 = 0.



Conlusion

In this talk, new results in the desription of 6D massless in�nite spin

representations were presented.

Expliit expressions are found for the Casimir operators of the algebra

iso(1, 5). It is proved that the in�nite spin representation is desribed by

one real parameter µ and one integer or half-integer number s.

It is shown that the massless in�nite spin representation is realized on the

two-twistor �elds. We present a full set of equations of motion for

two-twistor �elds.

A �eld twistor transform is onstruted and in�nite spin �elds are found

in the spae-time formulation with an additional spinor oordinate.

We present a new 6D in�nite spin �eld theory in the light-front

formulation. For it, we obtain in�nite-spin �elds in the light-one frame

whih depend on two sets of the SU(2)-harmoni variables.



Thank you very muh for your attention !


