The Resonant Breit-Wheeler Process in a Strong Electromagnetic Field

Vitalii Serov, Sergei Roshchupkin, Victor Dubov

Peter the Great St. Petersburg Polytechnic University

MQFT-2022, October 2022

Pioneer works

- **Volkov** (1935,1937). Solution of Dirac's equation for an electron in the field of plane electromagnetic wave.
- Schwinger (1951), Brown and Kibblie (1964). Green's function for an electron in the field of plane electromagnetic wave.
- Oleinik (1967). Resonant processes.
- McDonald et al. (1996). A study of strong-field QED, experiment E-144, is underway at the SLAC in which the picosecond pulse from a TW laser collides with 50-GeV electrons.

Describing of the resonant process

 The main parameter of the field is the classical relativistic invariant parameter

$$\eta = \frac{eF\lambda}{mc^2},\tag{1}$$

numerically equal to the ratio of the field work at the wavelength to the rest energy of the electron.

Feynman diagrams of the resonant Breit-Wheeler Process

Under resonance conditions, the intermediate virtual electron (positron) in the external field comes on the mass shell.

The resonant kinematics

- The initial process of the second order in the fine structure constant effectively reduces into two successive processes of the first order: the external field-stimulated Breit-Wheeler process and the external field-stimulated Compton effect.
- The energies of the initial and final particles are ultrarelativistic and their momenta lie in a narrow cone of angles

$$\omega_{1,2} \gg m_*, \quad E_{\pm} \gg m_*, \quad m_* = m \sqrt{1 + \eta^2};$$
 (2)

$$\theta_{j\pm} \equiv \angle(\mathbf{k}_j, \mathbf{p}_{\pm}) \ll 1, \quad j = 1, 2; \quad \theta \equiv \angle(\mathbf{k}_{1,2}, \mathbf{k}) \sim 1.$$
 (3)

Defining the variables and parameters

 Energies of final particles in units of the total energy of the initial gamma-quanta

$$X_{\pm\eta} = \frac{E_{\pm}}{\omega_i}, \quad \omega_i = \omega_1 + \omega_2.$$
 (4)

Characteristic numbers of absorbed photons of the external wave

$$r_{\eta} = \frac{(2m_{*})^{2}}{4\omega\omega_{2}\sin^{2}\frac{\theta}{2}}, \quad r'_{\eta} = \frac{m_{*}^{2}}{4\omega\omega_{1}\sin^{2}\frac{\theta}{2}}.$$
 (5)

Ultrarelativistic parameters

$$\delta_{2+} \equiv \frac{\omega_i}{2m_e} \theta_{2+}, \quad \delta_{1-} \equiv \frac{\omega_i}{m_e} \theta_{1-}. \tag{6}$$

Consideration of the vertex with pair production

 Solutions for energy of the final positron (stimulated Breit–Wheeler process)

$$x_{+\eta(r)} = \frac{\omega_2}{2\omega_i(x_{\eta(r)} + \delta_{2+}^2)} \left[x_{\eta(r)} \pm \sqrt{x_{\eta(r)}(x_{\eta(r)} - 1) - \delta_{2+}^2}\right], (7)$$

$$\varkappa_{\eta(r)} = \frac{r}{r_{\eta}} \ge 1. \tag{8}$$

Restriction for the outgoing angle of the final positron

$$0 \le \delta_{2+}^2 \le \varkappa_{\eta(r)} (\varkappa_{\eta(r)} - 1). \tag{9}$$

• For the oncoming motion of the gamma-quanta and the laser wave $\theta=\pi, \omega=1 eV$ and the energy of the initial gamma quantum $\omega_2=50 GeV$ can be obtained $r_\eta\approx 5(1+\eta^2)$.

Energies

The dependence of the resonant positron energy (in units of the total energy of the initial gamma-quanta) on its outgoing angle for a different number of absorbed wave photons for two laser intensities. Solid lines correspond to the solution with the "plus" sign, dotted lines – with the "minus" sign. The initial parameters are equal to:

$$\omega_1 = 5 \text{GeV}, \omega_2 = 50 \text{GeV}, \omega = 1 \text{eV}$$

Consideration of the vertex with Compton effect

 Solution for the energy of the final electron (stimulated Compton effect)

$$X_{-\eta(r')} = \frac{\omega_1}{2\omega_i(x'_{\eta(r')} - \delta_{1-}^2)} [x'_{\eta(r')} + \sqrt{x'_{\eta(r')}^2 + 4(x'_{\eta(r')} - \delta_{1-}^2)}],$$
(10)

$$\varkappa'_{\eta(r')} = \frac{r'}{r'_{\eta}} \gtrsim 1. \tag{11}$$

Restriction for the outgoing angle of the final electron

$$0 \le \delta_{1-}^2 < \kappa_{\eta(r')}' \left(1 - \frac{\omega_1}{\omega_i}\right) - \frac{\omega_1^2}{\omega_i^2}. \tag{12}$$

An agreement of solutions

The energy conversation law

$$x_{-\eta(r')} = 1 - x_{+\eta(r)}. (13)$$

The dependence of the outgoing angles of the electron on the outgoing angle of the positron, at which the law of the energy conservation is fulfilled.

The resonant cross section

The maximum resonant cross section for channel A

$$\frac{d\sigma_{\eta(r,r')}^{max}}{d\delta_{2+}^{2}} = r_{e}^{2} \frac{m^{2}}{\omega_{1}\omega_{2}} \left(\frac{32}{\alpha}\right)^{2} P(u_{2+}, \varkappa_{\eta(r)}) \frac{f_{\eta}}{P^{2}(r_{\eta})} K(u_{1-}, \varkappa'_{\eta(r')}), \tag{14}$$

Functions from BW-process

$$P(u, \varkappa_{\eta(r)}) = J_r^2(\gamma) + \eta^2(2u - 1) \left[\left(\frac{r^2}{\gamma^2} - 1 \right) J_r^2 + J_r'^2 \right]; \quad (15)$$

$$P(r_{\eta}) = \sum_{r=r}^{\infty} \int_{1}^{\varkappa_{\eta(r)}} \frac{du}{u\sqrt{u(u-1)}} P(u_{2+}, \varkappa_{\eta(r)});$$
 (16)

$$\gamma = 2r rac{\eta}{\sqrt{1+\eta^2}} \sqrt{u arkappa_{\eta(r)} (1-u arkappa_{\eta(r)})}.$$

The resonant cross section

Functions from Compton effect

$$K(u, \varkappa'_{\eta(r')}) = -4J_{r'}^{2}(\gamma') + \eta^{2} \left(2 + \frac{u^{2}}{1+u}\right) (J_{r'-1}^{2} + J_{r'+1}^{2} - 2J_{r'}^{2}),$$

$$\gamma' = 2r' \frac{\eta}{\sqrt{1+\eta^{2}}} \sqrt{u\varkappa'_{\eta(r')}(1-u\varkappa'_{\eta(r')})}.$$
(18)

Ultrarelativistic invariants

$$u_{2+} = \frac{\omega_2}{4x_+\omega_i(1-x_+\omega_i/\omega_2)}, \quad u_{1-} = \frac{\omega_1}{\omega_i x_-}.$$
 (20)

• Estimation for $\eta = 1$

$$d\sigma_{n(r,r')}^{max} \approx 2 * 10^7 d\sigma_{BW}$$
.

