Baryon Asymmetry and Holographic Composed Higgs

Early Universe First Order Phase Transition due to the Composite Higgs Boson Dynamics in the Soft-wall Holographic Model

Oleg Novikov, Andrey Shavrin

St Petersburg
University

Baryon Asymmetry

```
Sakharov conditions
(necessary conditions to produce the antisymmetry of matter and antimatter):
1. baryon number violation,
2. CP violation (particle - antiparticle),
3. CPT violation (violation of the thermodynamic equilibrium).
```

- Only the second is satisfied in perturbative Standard Model (CKM matrix; effect is too small).
- Counting non-perturbative effects (sphalerons) allows fulfilling the first two conditions.
- CTP theorem leads to "washing" of the asymmetry. It must be violated, for instance, with 1st order phase transition. In Standard Model ...

Electroweak Baryogenesis: Concept of "bubble" nucleation in SM

In SM: Phase Transition \Rightarrow Electroweak Symmetry Breaking (in the efficient potential of the electroweak model)

$$
\mathrm{SU}(2)_{\mathrm{L}} \otimes \mathrm{U}(1)_{\mathrm{Y}} \rightarrow \mathrm{U}(1)_{\mathrm{em}}
$$

$$
\begin{aligned}
& m_{\text {Higgs B. }}<80 \mathrm{GeV} \Rightarrow \text { 1st order }(\text { wanted }) \\
& m_{\text {Higgs B. }}=125 \mathrm{GeV} \Rightarrow \text { crossover }(\text { in SM })
\end{aligned}
$$

Baryon asymmetry cannot be explained in the framework of Standard Model.

Composite Higgs model (CH)

Problem: EW symmetry breaking doesn't disturb the T.d. equilibrium. Possible solution: to consider inner symmetry braking, e.g.: CH.

$$
\mathcal{L}=\mathcal{L}_{\mathrm{SM}}+\mathcal{L}_{\mathrm{CH}}+\underbrace{W_{\mu}^{\alpha} J_{L}^{\alpha \mu}+B_{\mu} J_{Y}^{\mu}+\sum_{r} \bar{\psi}_{r} \mathcal{O}_{r}+\text { h.c. }}_{\mathrm{SM}-\mathrm{CH} \text { interaction }}
$$

$\mathcal{L}_{\mathrm{CH}}$ is a new strongly coupled sector $J_{L}^{\alpha \mu}$ and J_{Y}^{μ} are conserved currents of the new sector \mathcal{O}_{r} are composite operators of the new sector fields

Composite Higgs model (CH)

$\left(\mathcal{G}\right.$ vacuum $\left.\begin{array}{c}\text { invariant }\end{array}\right) \xrightarrow[\text { spontaneous }]{\text { breaking }}(\mathcal{H}$ vacuum $) \Rightarrow$ Goldstone bosons \ni Higgs boson
$\begin{gathered}\text { physical model } \\ \text { must include } \mathrm{EW}\end{gathered}: \mathcal{G} \supset \mathcal{H} \supseteq \mathrm{SU}(2)_{\mathrm{L}} \otimes \mathrm{U}(1)_{\mathrm{Y}} \Rightarrow \underset{\text { model }}{\operatorname{minimal}}: \mathcal{G}=\mathrm{SO}(5), \mathcal{H}=\mathrm{SO}(4)$
Ψ_{l} are fundamental fields with $\mathrm{SO}(5)$ inner symmetry

$$
\Sigma_{I J}=\left\langle\bar{\Psi}, \Psi_{J}\right\rangle=\xi^{\top}\left[\left(\begin{array}{cc}
0_{4 \times 4} & 0 \\
0 & X
\end{array}\right)+\eta_{i} \tilde{T}_{i}\right] \xi \xrightarrow[\text { low energy }]{\mathrm{SO}(5) \rightarrow \mathrm{SO}(4)}\left(\begin{array}{cc}
0_{4 \times 4} & 0 \\
0 & X
\end{array}\right) \Rightarrow \begin{gathered}
\text { symmetry } \\
\text { breaking }
\end{gathered}
$$

$\xi=\exp \left(-i \pi_{a} T_{a}\right)$ are Goldstone bosons of the coset $T_{a} \in \mathrm{SO}(5) / \mathrm{SO}(4)$.
η_{i} are "radial" fluctuations along "unbroken" generators $\tilde{T}_{i} \in \mathrm{SO}(4)$
X is the background field. It gives main contribution in the effective potential.

Composite Higgs in AdS/CFT correspondence

$$
\mathcal{L}_{\mathrm{CM}} \text { at } N \gg 1 \Leftrightarrow \text { AdS } / \text { CFT correspondence }
$$

The condensate of $\mathcal{L}_{\mathrm{CM}}: \Sigma \sim \chi$ is dual to some filed in AdS

$$
S_{\chi}=\int d^{5} x \sqrt{|g|} e^{\phi}\left(\operatorname{tr} g^{\mu \nu}\left(\partial_{\mu} \chi\right)^{\top}\left(\partial_{\nu} \chi\right)-2 V_{\chi}(\Sigma)\right)
$$

Extra motivation to use CHM: "AdS/QCD has the same tunes.

$$
\mathrm{CHM} \sim \mathrm{QCD} \Rightarrow \text { we can use the results of AdS/QCD. }
$$

(i.e. there is reason to suppose self-consistent; but we should not be lazy and check it anyway)

Effective Potential and Holography

$$
\begin{gathered}
\mathcal{Z}[J]=\int \mathcal{D} \varphi \exp \left(-S[\varphi]-\int d^{4} x \varphi(x) J(x)\right) \stackrel{\text { def }}{\stackrel{ }{f}} e^{-W[J]} \\
\langle\varphi\rangle=\left.\frac{\delta W[J]}{\delta J}\right|_{J=0}, \Gamma[\langle\varphi\rangle]=W[J]-\int d^{4} x \frac{\delta W[J]}{\delta J(x)} J(x)-\text { Effective Action }
\end{gathered}
$$

EoM: $\frac{\delta \Gamma}{\delta\langle\varphi\rangle}=J \quad \begin{gathered}\text { Homogeneus } \\ \text { Solution }\end{gathered} \Rightarrow\langle\varphi\rangle=$ const $\Rightarrow \Gamma=-\mathrm{Vol}_{4} V_{\text {eff }}$ - $\begin{gathered}\text { Effective } \\ \text { Potential }\end{gathered}$

extrema condition

$$
\left.\mathcal{Z}[J] \xlongequal[\text { correspondence }]{\text { AdS } / \text { CFT }} \mathcal{Z}_{\text {AdS }} \xlongequal[\text { approximation }]{\text { quasiclassical }} e^{-S_{\text {AdS }}}\right|_{\text {IAdS }}
$$

$$
V_{\text {eff }}=-\left.\frac{1}{\mathrm{Vol}_{4}} S_{\mathrm{AdS}}\right|_{\partial \mathrm{AdS}} \text { - } \begin{aligned}
& \text { boundary term of the bulk theory } \\
& \text { defines quantum effective potential }
\end{aligned}
$$

Holographic Model and Solutions

$$
\begin{aligned}
& S_{\chi}=\int d^{5} x \sqrt{|g|} e^{\phi}\left(\operatorname{tr} g^{\mu \nu}\left(\partial_{\mu} \chi\right)\left(\partial_{\nu} \chi\right)-2 V_{\chi}(\chi)\right)-\begin{array}{c}
\text { dual to CH theory in the bulk } \\
\text { without fluctuations } \\
\text { and gauge fields }
\end{array} \\
& \begin{array}{l}
\text { Potential } \\
\text { parametrization }
\end{array} V_{\chi}(\chi)=\frac{m^{2}}{2} \chi^{2}-\frac{D}{4 L^{2}} \lambda \chi^{4}+\frac{\lambda^{2} \gamma}{6 L^{2}} \chi^{6}+o\left(\chi^{8}\right) \text { is the expansion of a } \\
& \text { more general theory }
\end{aligned}
$$

Fixed geometry: AdS with black hole horizon at $z=z_{H}$

$$
\begin{gathered}
d s^{2}=\frac{L^{2}}{z^{2}}\left(-f(z) d t^{2}+\frac{d z^{2}}{f(z)}+d \vec{x}^{2}\right), \quad f(z)=1-\left(\frac{z}{z_{\mathrm{H}}}\right)^{4} ; \quad \phi(z)=\phi_{2} z^{2} . \\
z_{\mathrm{H}}=1, T \sim \frac{1}{\sqrt{\phi_{2}}} \quad \begin{array}{c}
\text { All values are represented "in terms of horizon units" } \\
\text { Dilaton parameter plays role of the temperature. }
\end{array}
\end{gathered}
$$

"Extreme" Curve

$$
\frac{\delta S_{\chi}}{\delta \chi}=0 \Rightarrow \chi \xrightarrow{z \rightarrow 0} J z+\left(\sigma-\left(\frac{3}{2} J^{3}+\phi_{2} J\right) \log z\right) z^{3}+o\left(z^{5}\right)-\begin{gathered}
\text { give the sourses } \\
\text { for CFT operators }
\end{gathered}
$$

Knowing the extrema of the effective potential and its values at these points, we can judge abut the phase transition

$$
V_{\text {eff }}=-\left.\frac{1}{\mathrm{Vol}_{4}} S_{\chi}\right|_{\partial \mathrm{AdS}} \Rightarrow \begin{gathered}
\text { from EoM } \\
\text { for effective } \\
\text { action }
\end{gathered} \operatorname{Vol}_{4} \frac{\delta V_{\text {eff }}}{\delta\langle\varphi\rangle}=J \Rightarrow \underset{\text { absence of sources }}{\text { extrema condition is }} \Rightarrow J=0
$$

"extreme" solutions
$\overbrace{\chi \xrightarrow{z \rightarrow 0} \sigma z^{3}+o\left(z^{5}\right)}$ must give $\overbrace{\frac{\delta V_{\text {eff }}}{\delta\langle\varphi\rangle}=0} \Rightarrow \begin{gathered}\text { a new condition } \\ \text { for } \phi_{2} \text { and }\langle\varphi\rangle\end{gathered}$

$$
T \sim \frac{1}{\sqrt{\phi_{2}}}, \quad \frac{\delta V_{\text {eff }}}{\delta\langle\varphi\rangle}=0=\left.\frac{\delta}{\delta \sigma} S_{\chi}\left[\chi_{\text {Sol. }}(z ; J, \sigma)\right]\right|_{J=0} \quad \Rightarrow \quad\left\{\sigma_{1}, \ldots, \sigma_{n}\right\} \text { - extrema }
$$

Extrema of the Effective Potential ("Extreme" Solutions)

"Extreme" curves defines the positions σ of the effective potential extrema as functions of the parameter γ and temperature $\phi_{2}\left(T \sim \frac{1}{\sqrt{\phi_{2}}}\right)$

σ "is" average of the Higgs background $\sigma \sim\langle\varphi\rangle$ on the border.
Absolute value in physical units require the interaction with Standard Model.
Currently, all values are in terms of the horizon coordinate $z_{\mathrm{H}}=1$.

First Order Phase Transition and Effective Potential

values of $V_{\text {eff }}$ in the extrema $\Rightarrow T=T_{\mathrm{C}}\left(\phi_{2}=\phi_{2}^{\mathrm{C}}\right) \Rightarrow$ nontrivial true vacuum appears. At $T=T_{\text {II }}$ potential barrier vanishes.
First order PT is able in the range $T_{\text {II }}<T<T_{\mathrm{C}}\left(\phi_{2}^{\mathrm{II}}>\phi_{2}>\phi_{2}^{\mathrm{C}}(\gamma)\right)$

There is approximation $V_{\text {eff }}=a_{0}+a_{2} \sigma^{2}+a_{4} \sigma^{4}+a_{6} \sigma^{6}$ with the points $\left(\sigma_{\max }, V_{\max }\left(\sigma_{\max }\right)\right)$ and $\left(\sigma_{\min }, V_{\min }\left(\sigma_{\min }\right)\right)$

Nucleation Ratio

Cosmological condition: Baryogenesis goes enough efficient if there is one bubble per Hubble volume (i.e. gives observed asymmetry)

$F=F\left[V_{\text {eff }}(\langle\varphi\rangle), R\right]$ is free energy of the bubble;
R is the radius of the bubble, it appears with the sized defined by microscopic physic; Critical value $\left.\frac{\partial F}{\partial R}\right|_{R_{\mathrm{C}} \xlongequal{\operatorname{def}} R^{\prime}} F_{\mathrm{C}} \stackrel{\text { def }}{=} F\left(R_{\mathrm{C}}\right)$: if $R>R_{\mathrm{C}}$, bubble grow. Otherwise, it bursts.

$$
F\left[V_{\text {eff }}\right] \xlongequal[\text { approximation }]{\text { thin walls }} 4 \pi R^{2} \mu-\frac{3 \pi}{4} R^{3}\left(\mathcal{F}_{\text {out }}-\mathcal{F}_{\text {in }}\right)
$$

Subtraction is extremely sensitive to accuracy!

Effective Potential

Free energy density for non-trivial solution (line).
Free energy density for trivial solution is zero (green field).

Free energy density with perturbation theory:

$$
\mathcal{F}=\mathcal{F}_{(0)}+\lambda \mathcal{F}_{(1)}+\lambda^{2} \mathcal{F}_{(2)}+\ldots
$$

Free energy of bubble $F\left[V_{\text {eff }}\right]$ in processing ...

Next Step

$$
A T^{4} \exp \left(-\frac{F_{\mathrm{C}}}{T}\right) \sim H^{4}(T)=\left(\frac{T^{2}}{M_{\mathrm{PI}}}\right)^{4}
$$

- Analytical Free Energy (Pertubation Theory)
- Fix the Parameters (Interaction with Standard Model - bulk gauge fields)
- Physical Units (Infrared Regularization and finite temperature - "radial" heavy fluctuations)

$$
W_{\mu}^{\alpha} J_{L}^{\alpha \mu}+B_{\mu} J_{Y}^{\mu} \quad \Leftrightarrow \quad J^{\mu} \sim A^{M} \text { - bulk } \mathcal{G} \text { gauge field }
$$

$$
\Sigma_{I J}=\left\langle\bar{\Psi}, \Psi_{J}\right\rangle=\xi^{\top}\left[\left(\begin{array}{cc}
0_{4 \times 4} & 0 \\
0 & X
\end{array}\right)+\eta_{i} \tilde{T}_{i}\right] \xi \quad \Leftrightarrow \quad \frac{1}{T} \propto \sqrt{\phi_{2}} \sim \mu_{\mathrm{IR}} \sim m_{\eta} \gtrsim 10 \mathrm{TeV}
$$

Conclusion

What we have done?

- We suggested an interacting Composed Higgs Model in soft-wall holography.
- First-order phase transition that could lead to the desired breaking thermodynamic equilibrium was found as a quantum effect through holography.
- Extrema solutions give finite results. That allows us to approximate the effective potential by its extrema.

What should we do now?

- count interaction of CHM with SM to find critical temperature T_{C} "in eV ";
- find non-extrema values of the effective potential (here some extra UV renormalization is needed);
- count fluctuation and gauge interaction (adjoint representation of $\mathrm{SO}(5)$; it will give chemical potential).
What may we do with the model in the future? - search for PT in gravitational part "near-AdS"; — count gravity interaction (that breaks scale "invariance").

List of the Backup Slides

Thank you for your attention!

List of the Backup Slides:

- Nucleation Ratio
- First Order Phase Transition Criteria
- Units (" $z_{\mathrm{H}}=1$ " and physical "in eV")
- "Symmetries" of the CHM Potential
- CHM potential isn't "Tuned"

Nucleation Ratio

The next step is to consider
Baryogenesis generates enough asymmetry (enough efficient) if there is one bubble per Hubble volume

$F=F[\langle\varphi\rangle, R]$ - Free energy of the bubble; R is the radius of the bubble Hubble horizon (time, volume, radius) — speed of receding object behind it is greater than the speed of light (Don't confuse with cosmological horizon)
Bubble appears with a certain size. It defines with "micro-physics". If its radius is grater, then critical one $\left.\frac{\partial F}{\partial R}\right|_{R_{C}}{ }_{\text {def }}^{=}$, the bubble grow. Otherwise, it bursts.

It gives $F_{\mathrm{C}} \stackrel{\text { def }}{=} F\left(R_{\mathrm{C}}\right)$ and defines nucleation ratio and "viability of the model".

First Order Phase Transition Criteria

$$
\frac{\delta \Gamma}{\delta\langle\varphi\rangle}=\operatorname{Vol}_{d} \frac{\delta V_{\text {eff }}}{\delta\langle\varphi\rangle}=J, \quad J=0 \Leftrightarrow \text { condition for all extrema }
$$

"Physical" potential $V_{\text {eff }}$ should have the trivial minimum (we can take $\left.V_{\text {eff }}\right|_{\langle\varphi\rangle=0}=0$) and be even function $V_{\text {eff }}[\langle\varphi\rangle]=V_{\text {eff }}[-\langle\varphi\rangle]$ and give finite motion $V_{\text {eff }} \xrightarrow{\langle\varphi\rangle \rightarrow \pm \infty} \infty$

$\langle\varphi\rangle$
$\langle\varphi\rangle$

$$
\begin{aligned}
& \left.\frac{\delta V_{\text {eff }}}{\delta\langle\varphi\rangle}\right|_{\langle\varphi\rangle=0}=0,\left.\quad \frac{\delta V_{\text {eff }}}{\delta\langle\varphi\rangle}\right|_{\langle\varphi\rangle=\langle\varphi\rangle_{\max }>0}=0,\left.\quad \frac{\delta V_{\text {eff }}}{\delta\langle\varphi\rangle}\right|_{\left.\langle\varphi\rangle=\langle\varphi\rangle_{\min }\right\rangle\langle\varphi\rangle_{\max }}=0,
\end{aligned}
$$

What Units are Used?

The scale has been fixed with the horizon coordinate in AdS $z_{H}=1$. This fixed the energy/scale units of the all values. z_{H} recovering is needed to define "physical" units (eV, K, etc.)
"physical" dilaton parameter $\tilde{\phi}_{2}=\frac{\phi_{2}}{z_{\mathrm{H}}^{2}} ; \quad$ "physical" temperature $T=\frac{\left|f^{\prime}\left(\mathrm{z}_{\mathrm{H}}\right)\right|}{4 \pi}=\frac{1}{\pi \mathrm{z}_{\mathrm{H}}}$
$\tilde{\phi}_{2}=$ const $\Rightarrow z_{\mathrm{H}}=\frac{\phi_{2}}{\tilde{\phi}_{2}} \Rightarrow$ "Temperatute" in "horizon" units $T=\frac{1}{\pi} \sqrt{\frac{\tilde{\phi}_{2}}{\phi_{2}}} \sim \frac{1}{\sqrt{\phi_{2}}}$
To recover $\tilde{\phi}_{2}$, we have to include gauge interaction of \mathcal{G}

$$
\mathcal{D}_{\mu} \Sigma=\partial_{\mu} \Sigma+\left[A_{\mu}, \Sigma\right]
$$

and include terms of the interaction CHM with SM.

"Symmetries" of the CHM Potential

$$
V_{\chi}(\chi)=\frac{m^{2}}{2} \chi^{2}-\frac{D}{4 L^{2}} \lambda \chi^{4}+\frac{\lambda^{2} \gamma}{6 L^{2}} \chi^{6} \text { is the expantion of a more general theory }
$$

Suggestions:

- The potential V_{χ} always has true vacuum with $E_{\min }\left(V_{\chi} \xrightarrow{\chi \rightarrow \pm \infty} \infty\right)$. So we may use any even power χ^{n} instead of the last term χ^{6}.
- The expansion of V_{χ} has certain sign of the second term $\lambda>0$ (the first one m^{2} chosen for the theory to be conformal in AdS).
- Higher orders of the expansion don't give new minima at the considered temperatures.

The certain parametrization has been chosen with respect to the "symmetries"
$\begin{aligned} & \text { "Scale invariace", } \begin{array}{c}\text { defining } \\ \text { the coefficents }\end{array}: \begin{array}{c}L \rightarrow L^{\prime} \\ \chi \rightarrow \sqrt{\lambda} \chi ;\end{array} \begin{array}{c}\text { Conformality near } \\ \text { the AdS border } \\ \text { ("correct" conformal weights) }\end{array}\end{aligned}: \begin{gathered}\Delta_{-}=1 \\ \Delta_{+}=3\end{gathered} \Rightarrow m^{2}=-\frac{D}{3 L^{2}}$
D is for the Large D limit. But its usage doesn't give any results. (to keep interaction constants finite at $D \rightarrow \infty$)

CHM potential isn't "Tuned"

$$
\begin{aligned}
V_{\chi}=a_{2} \chi^{2}+a_{4} \chi^{4}+a_{6} \chi^{6}, & a_{2}<0, \\
a_{4}<0, & a_{6}>0 \\
V_{\text {eff }}=b_{2}\langle\varphi\rangle^{2}+b_{4}\langle\varphi\rangle^{4}+b_{6}\langle\varphi\rangle^{6}, & b_{2}>0, b_{4}<0, b_{6}>0
\end{aligned}
$$

in details:

- $V_{\text {eff }}=V_{\text {eff }}[\langle\varphi\rangle]$ describes a quantum objects at the border. V_{χ} is a dual classical potential in the bulk.
- $V_{\text {eff }}=-\left.\frac{1}{V o l_{4}} S_{\text {AdS }}\right|_{\partial A d S}$ includes the solutions of the EoM $\frac{\delta S_{\chi}}{\delta \chi=0}$ in bulk. In other words, $V_{\text {eff }}$ includes physics of AdS

