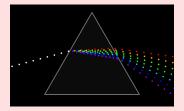
Nonrelativistic QED

for bound state theory in Quantum Electrodynamics

V.I. Korobov

Joint Institute for Nuclear Research 141980, Dubna, Russia korobov@theor.jinr.ru



MQFT-2022, October, 2022

<ロ> <回> <回> <回> < 回> < 回> < 回> < 回</p>

Principles of NRQED Basic interactions and perturbation theory Leading order relativistic and radiative contributions

メロシメ 日マメ ヨマ

Ξ.

Nonrelativistic QED

Principles of NRQED Basic interactions and perturbation theory Leading order relativistic and radiative contributions

<ロ> <回> <回> <回> < 回> < 回> < 回> < 回</p>

Concept of NRQED

QED

$$\mathcal{L}_{\text{QED}} = \bar{\psi} \left[\left(i\partial - e A \right) \gamma - m \right] \psi - \frac{1}{4} F_{\mu\nu} F^{\mu\nu},$$

Nonrelativistic QED

 $\mathcal{L}_{\mathrm{NRQED}}$

Effective Hamiltonian

$$H_{\text{eff}} = \sum_{i} \frac{\mathbf{P}_{i}^{2}}{2m_{i}} + e^{2} \sum_{j>i} \frac{Z_{i}Z_{j}}{r_{ij}} + \text{higher order corrections}$$

(Here $\mathbf{P}_i = \mathbf{p}_i + e\mathbf{A}$)

Principles of NRQED Basic interactions and perturbation theory Leading order relativistic and radiative contributions

Nonrelativistic QED Lagrangian

The Lagrangian for NRQED is built out nonrelativistic (two-component) Pauli spinor fields ψ for each of the electron, positron, muon, proton, etc. Photons are treated in the same fashion as in QED.

$$\begin{split} L_{\text{eff}} &= -\frac{1}{2} (E^2 - B^2) + \psi_e^* \left(i\partial_t - e\varphi + \frac{\mathbf{D}^2}{2m} + \frac{\mathbf{D}^4}{8m^3} + \dots \right) \psi_e \\ &+ \psi_e^* \left(c_F \frac{e}{2m} \sigma \mathbf{B} + c_D \frac{e}{8m^2} [\mathbf{D}\mathbf{E}] + c_S \frac{e}{8m^2} \{ \boldsymbol{\sigma} \cdot [i\mathbf{D} \times \mathbf{E}] \} \right) \psi_e \\ &+ \text{higher order terms} + \text{muon, proton, etc.} \\ &- \frac{d_1}{m_e m_\ell} (\psi_e^* \sigma_e \psi_e) (\psi_\ell^* \sigma_\ell \psi_\ell) + \frac{d_2}{m_e m_\ell} (\psi_e^* \psi_e) (\psi_\ell^* \psi_\ell) + \dots \end{split}$$
where $\mathbf{D} = \mathbf{\nabla} - ie\mathbf{A}$.

NRQED: The beginning Principles of NRQED Higher order corrections Basic interactions and perturbation theory Applications Leading order relativistic and radiative contributions

Wilson coefficients

Wilson coefficients for the electron interactions with external field:

$$\begin{split} c_D &= 1 + 2\kappa + \frac{\alpha}{\pi} \frac{8}{3} \left[\ln \left(\frac{m}{2\Lambda} \right) + \frac{5}{6} - \frac{3}{8} \right], \\ c_S &= 1 + 2\kappa, \\ c_F &= 1 + \kappa. \end{split}$$

Wilson coefficients for contact interactions:

$$d_1 = (Z\alpha)^2 \frac{2}{m_e^2 - m_\ell^2} \ln\left(\frac{m_e}{m_\ell}\right),$$

$$d_2 = (Z\alpha)^2 \left\{ \frac{7}{3} - 2\ln\left(\frac{m}{2\Lambda}\right) + \frac{2}{m_e^2 - m_\ell^2} \left[m_e^2 \ln\left(\frac{m_\ell}{\mu}\right) - m_\ell^2 \ln\left(\frac{m_e}{\mu}\right) \right] \right\}.$$

(ロ) (同) (ヨ) (ヨ) (ヨ) (の)

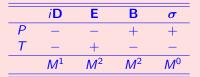
NRQED requirements

Requirements for the NRQED Lagrangian interaction terms:

- Hermiticity;
- Gauge invariance. We use covariant derivatives: $\mathbf{D} = \nabla ie\mathbf{A}$;
- Parity. The Lagrangian should be parity even;
- Time reversal. The Lagrangian should be even under time reversal transformation.
- Coupling constants are determined by requiring that predictions of QED and NRQED agree to a desired order in (v/c);
- Contributions from QED that involve relativistic loop momenta are absorbed into NRQED in a form of various local interactions.

Following¹ we use operators: iD_t , $i\mathbf{D}$, \mathbf{B} , \mathbf{E} , σ , as building blocks of the Lagrangian and expand it into a series of inverse powers of the electron mass m:

$$\mathcal{L} = \sum_{n=0} \psi_e^* \frac{O_n}{m^n} \psi_e$$



Spatial parity and time reversal symmetries, and mass dimension of operators.

¹Gil Paz. An introduction to NRQED. Modern Physics Letters A. **30**, 1550128 (2015).

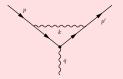
NRQED: The beginning Principles of NRQED Higher order corrections Basic interactions and perturbation theory Applications Leading order relativistic and radiative contributions

Lagrangian NRQED

Using symmetries imposed on the Lagrangian, one can show that the form \mathcal{L} is unique, and the coefficients: c_F , c_D , etc. can be unambiguously obtained from a comparison with the scattering amplitude in QED after choosing the NRQED regularization method.

The only arbitrariness remains with the ambiguity of choosing a basis for homogeneous polynomials:

 $p^2 + p'^2$, **pp**' or $(\mathbf{p} + \mathbf{p}')^2$, $(\mathbf{p} - \mathbf{p}')^2$



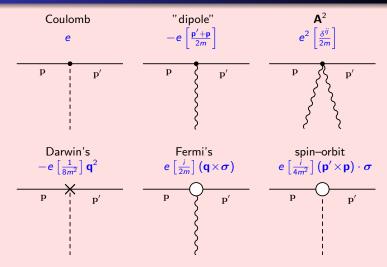
◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ▶ ◆ □ ◆ ○ ○ ○

Basic interactions and perturbation theory

メロト (周) (ヨ) (ヨ) (ヨ) (の()

Principles of NRQED Basic interactions and perturbation theory Leading order relativistic and radiative contributions

Examples of basic interactions in NRQED. Vertices.



Here $\mathbf{q} = \mathbf{p}' - \mathbf{p}$ is a transferred impulse of the particle.

V.I. Korobov

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□>

NRQED propagators

A natural choice of a gauge for the electromagnetic field is the Coulomb gauge $\left(\textbf{kA}=0\right)$

$$\begin{cases} G^{00} = \frac{1}{\mathbf{k}^2}, & - \text{the Coulomb photon propagator,} \\ G^{ij} = \frac{\delta_{ij} - k_i k_j / \mathbf{k}^2}{k^2 + i\varepsilon}, & - \text{the transverse photon propagator,} \\ G^{0i} = G^{i0} = 0, & i, j = 1, 2, 3. \end{cases}$$

Propagators for massive particles

$$\frac{1}{E - \mathbf{p}^2 / (2m) + i\varepsilon}$$

NRQED. The beginning Higher order corrections Basic interactions and perturbation theory Applications

Zero-order approximation

Zero-order Lagrangian is

$$\mathcal{L}_{ ext{eff}}^{(0)} = -rac{1}{2}(E^2 - B^2) + \sum_n \psi_n^* \left(i\partial_t - eZ_n\varphi + rac{\mathbf{D}^2}{2m_n}
ight)\psi_n \,.$$

By variation of field functions ψ_n and quantization of the electromagnetic field, one gets the nonrelativistic Hamiltonian of a system of particles interacting with an electromagnetic field:

$$\breve{H}_{0} = \sum_{i} \frac{\mathbf{P}_{i}^{2}}{2m_{i}} + e^{2} \sum_{j>i} \frac{Z_{i}Z_{j}}{r_{ij}} + \sum_{\lambda=1,2} \int d^{3}k \, k \, a^{+}_{k\lambda} a_{k\lambda}. \tag{*}$$

Here $\mathbf{P}_i = \mathbf{p}_i + eZ_i \mathbf{A}$. Operators $\mathbf{A}(\mathbf{r})$ are presented in terms of photon creation and annihilation operators

$$\mathbf{A}(\mathbf{r}) = (2\pi)^{-3/2} \int \frac{d^3k}{\sqrt{2k}} \left(a_{k\lambda}^+ e^{-i\mathbf{k}\mathbf{r}} + a_{k\lambda} e^{i\mathbf{k}\mathbf{r}} \right) \mathbf{e}_{\lambda}.$$

Hamiltonian (*) is a convenient starting point for building up the nonrelativistic quantum electrodynamics (NRQED) in the Hamiltonian form. イロト 不得 トイヨト イヨト 三日

Nonstationary perturbation theory

Let $H = H_0 + V$, then we can expand K in increasing powers of V:

 $K(2,1) = K_0(2,1) + K^{(1)}(2,1) + K^{(2)}(2,1) + \dots$

where $K_0(2,1)$ is a propagator (or a Green's function) of the unperturbed Hamiltonian:

$$\begin{aligned} &\mathcal{K}_0(2,1) = e^{-i\mathcal{H}_0(t_2-t_1)}, \\ &[i\partial/\partial t_2 - \mathcal{H}_0(2)] \, \mathcal{K}_0(2,1) = i\delta(2,1). \end{aligned}$$

For instantaneous interaction:

$$K^{(1)}(2,1) = -i \int K_0(2,3) V(3) K_0(3,1) d\tau_3,$$

For a transverse photon:

 $\mathcal{K}^{(1)}(2,1) = -i \int \mathcal{K}_0(2,4) V(4) G(4,3) \mathcal{K}_0(4,3) V(3) \mathcal{K}_0(3,1) d\tau_3 d\tau_4,$

Functions V(3) and V(4) are some vertex functions of interaction with the electro-magnetic field.

Perturbation theory for a stationary state

$$\Delta E = \int \prod_{i}^{N} d\mathbf{r}_{i}' \prod_{j}^{N} d\mathbf{r}_{j} d(t'-t) \frac{1}{(2\pi)^{4}} \int d^{4}k \psi_{0}^{*}(\mathbf{r}_{j},t) V(2) \\ \left\{ e^{-i(k_{0}t-\mathbf{kr}_{j})} \left[\frac{4\pi}{k^{2}+i\epsilon} \left(\delta_{ij} - \frac{k_{i}k_{j}}{\mathbf{k}^{2}} \right) \right] e^{i(k_{0}t'-\mathbf{kr}_{i})} K_{0}(2,1) \right\} V(1) \psi_{0}(\mathbf{r}_{i},t')$$

Integrating over t one gets

$$\Delta E = \frac{1}{(2\pi)^4 i} \int \frac{d^4 k}{k^2 + i\epsilon} 4\pi \left(\delta_{ij} - \frac{k_i k_j}{\mathbf{k}^2} \right) \left\langle \psi_0 \left| V(2) e^{i\mathbf{k}\mathbf{r}_a} \frac{1}{E_0 - k_0 - H_0} e^{-i\mathbf{k}\mathbf{r}_b} V(1) \right| \psi_0 \right\rangle - \delta_{ab} \, \delta m \left\langle \psi_0 \right| \psi_0 \right\rangle$$

or performing integration over k_0 ($k = |\mathbf{k}|$):

$$\Delta E = \frac{1}{(2\pi)^3} \int \frac{d^3 \mathbf{k}}{2k} 4\pi \left(\delta_{ij} - \frac{k_i k_j}{\mathbf{k}^2} \right) \left\langle \psi_0 \left| V(2) e^{i\mathbf{k}\mathbf{r}_a} \frac{1}{E_0 - k - H_0} e^{-i\mathbf{k}\mathbf{r}_b} V(1) \right| \psi_0 \right\rangle - \delta_{ab} \, \delta m \left\langle \psi_0 | \psi_0 \right\rangle$$

Leading order relativistic and radiative contributions.

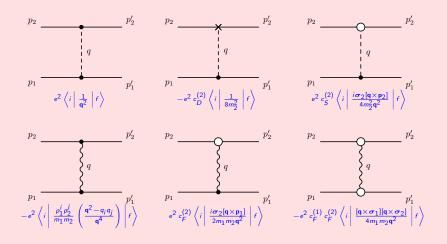
メロト (日) (日) (日) (日) (日) (0)

NRQED. The beginning Applications

Leading order relativistic and radiative contributions

Đ.

Breit-Pauli Hamiltonian



Breit-Pauli Hamiltonian in the coordinate space

Taking into account the relativistic correction to the kinetic energy

$$E = c\sqrt{m^2c^2 + \mathbf{p}^2} = mc^2 + \mathbf{p}^2/2m + \mathbf{p}^4/8c^2m^3 + \dots$$

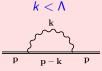
The Breit-Pauli Hamiltonian takes a form $(\mathbf{r}_{ij} = \mathbf{r}_j - \mathbf{r}_i)$:

$$\begin{split} \mathcal{H}_{B} &= -\frac{1}{c^{2}}\sum_{i}\frac{\mathbf{p}_{i}^{4}}{8m_{i}^{3}} + \mathcal{U}_{B}, \\ \mathcal{U}_{B} &= -\frac{e^{2}}{c^{2}}\sum_{i>j}\frac{Z_{i}Z_{j}}{2m_{i}m_{j}}\left(\frac{\mathbf{p}_{i}\mathbf{p}_{j}}{r_{ij}} + \frac{\mathbf{r}_{ij}(\mathbf{r}_{ij}\mathbf{p}_{i})\mathbf{p}_{j}}{r_{ij}^{3}}\right) - \frac{e^{2}}{c^{2}}\sum_{i>j}4\pi\delta(\mathbf{r}_{ij})Z_{i}Z_{j}\left(\frac{c_{D}^{(i)}}{8m_{i}^{2}} + \frac{c_{D}^{(j)}}{8m_{j}^{2}}\right) \\ &- \frac{e^{2}}{c^{2}}\sum_{j\neq i}\frac{Z_{i}Z_{j}c_{S}^{(j)}[\mathbf{r}_{ij}\times\mathbf{p}_{j}]\mathbf{s}_{j}}{2m_{j}^{2}r_{ij}^{3}} - \frac{e^{2}}{c^{2}}\sum_{i>j}\frac{Z_{i}Z_{j}\left(c_{F}^{(i)}[\mathbf{r}_{ij}\times\mathbf{p}_{j}]\mathbf{s}_{i} - c_{F}^{(j)}[\mathbf{r}_{ij}\times\mathbf{p}_{i}]\mathbf{s}_{j}\right)}{m_{i}m_{j}r_{ij}^{3}} \\ &+ \sum_{i>j}\left\{\left[\frac{\mu_{i}\mu_{j}}{r_{ij}^{3}} - 3\frac{(\mu_{i}\mathbf{r}_{ij})(\mu_{j}\mathbf{r}_{ij})}{r_{ij}^{5}}\right] - \frac{8\pi}{3}\mu_{i}\mu_{j}\delta(\mathbf{r}_{ij})\right\}. \end{split}$$

Here $\mu_i = c_F^{(i)} Z_i(e\hbar/2m_ic) \sigma_i$ is an operator of magnetic moment of a particle.

Principles of NRQED Basic interactions and perturbation theory Leading order relativistic and radiative contributions

Self-energy correction in the NRQED. Low energy.



The ultrasoft scale contribution may be expressed:

$$E_{L} = \frac{2\alpha}{3\pi m^{2}} \int_{0}^{\Lambda} k \, dk \left\langle \mathbf{p} \left(\frac{1}{E_{0} - H - k} \right) \mathbf{p} \right\rangle - \delta m \left\langle \psi_{0} | \psi_{0} \right\rangle.$$

The integrand may be further rearranged using the operator identity

$$(E_0 - H - k)^{-1} = -1/k - \frac{1}{k^2}(E_0 - H) + \frac{1}{k^2}\frac{(E_0 - H)^2}{E_0 - H - k}$$

that results in

$$E_{L} = \frac{2\alpha}{3\pi m^{2}} \left[-\langle \mathbf{p}^{2} \rangle \Lambda + \langle \mathbf{p} [H, \mathbf{p}] \rangle \ln \Lambda + \int \frac{dk}{k} \left\langle \mathbf{p} \frac{(E_{0} - H)^{2}}{E_{0} - H - k} \mathbf{p} \right\rangle \right] -\delta m \left\langle \psi_{0} | \psi_{0} \right\rangle.$$

Self-energy correction in the NRQED. High energy.

Let us consider the Darwin term in the NRQED Lagrangian

$$c_D \frac{e}{8m^2} [\mathbf{DE}]$$

For an electron the coefficients c_D is defined as follows

$$c_D = 1 + 2a_e + \frac{\alpha}{\pi} \frac{8}{3} \left[\ln\left(\frac{m}{2\Lambda}\right) + \frac{5}{6} - \frac{3}{8} \right] + \dots$$

where a_e is the anomalous magnetic moment of an electron, Λ is a NRQED cutoff parameter.

Self-energy correction in the NRQED. High energy.

Here we take the $m\alpha^5$ order contribution from the NRQED Lagrangian Darwin term:

$$E_{H} = -\frac{c_{D}^{(5)}}{8m^{2}} 4\pi Z \alpha \left\langle \delta(\mathbf{r}) \right\rangle, \qquad c_{D}^{(5)} = 2\frac{\alpha}{2\pi} + \frac{\alpha}{\pi} \frac{8}{3} \left[\ln\left(\frac{m}{2\Lambda}\right) + \frac{5}{6} - \frac{3}{8} \right].$$

Then we get for the self-energy contribution for S states

$$E_{H} = \frac{\alpha}{3\pi m^{2}} \left[\ln \alpha^{-2} + \ln \frac{E_{h}}{\Lambda} - \ln 2 + \frac{5}{6} \right] 4\pi Z \alpha \langle \delta(\mathbf{r}) \rangle.$$

Summing up the E_L and E_H contributions we see that the cutoff parameter Λ cancels out and we've got a finite expression for the self-energy contribution.

Self-energy correction for a bound state

Replacing $E_h \rightarrow 2R_\infty$, we arrive at the well-known expression¹

$$\Delta E_{se} = \frac{4\alpha(Z\alpha)}{3m^2} \left[\ln \alpha^{-2} - \ln[k_0(n, l)/R_{\infty}] + \frac{5}{6} \right] \langle \psi | \delta(\mathbf{r}) | \psi \rangle + \frac{\alpha(Z\alpha)}{2\pi m^2} \left\langle \psi \left| \frac{\mathbf{r} \times \mathbf{p}}{r^3} \cdot \frac{\sigma}{2} \right| \psi \right\rangle.$$

where $\ln(k_0/R_{\infty})$ is the Bethe logarithm

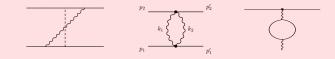
$$\ln [k_0(n, l)/R_{\infty}] = \sum_n \frac{\mathbf{p}_{0n} \mathbf{p}_{n0} (E_n - E_0) \ln(|E_n - E_0|/R_{\infty})}{\mathbf{p}_{0n} \mathbf{p}_{n0} (E_n - E_0)},$$

¹H.A. Bethe and E.E. Salpeter, *Quantum mechanics of one– and two–electron atoms*, Plenum Publishing Co., New York, 1977.

Э

Principles of NRQED Basic interactions and perturbation theory Leading order relativistic and radiative contributions

Leading order radiative corrections. Recoil effects



$$\begin{split} \delta^{(3)} E &= \alpha^3 \bigg[\frac{4Z}{3} \left(-\ln \alpha^2 - \beta(\boldsymbol{L}, \boldsymbol{v}) + \frac{5}{6} - \frac{1}{5} \right) \langle \delta(\mathbf{r}) \rangle \\ &+ \frac{2Z^2}{3M} \left(-\ln \alpha - 4\beta(\boldsymbol{L}, \boldsymbol{v}) + \frac{31}{3} \right) \langle \delta(\mathbf{r}) \rangle - \frac{14Z^2}{3M} Q(\boldsymbol{r}) \bigg], \end{split}$$

where

$$\beta(L, \nu) = \frac{\langle \mathbf{J}(H_0 - E_0) \ln ((H_0 - E_0)/R_\infty) \mathbf{J} \rangle}{\langle [\mathbf{J}, [H_0, \mathbf{J}]]/2 \rangle}$$

is the Bethe logarithm, $\mathbf{J} = \sum_{a} z_{a} \mathbf{p}_{a} / m_{a}$ is the electric current density operator of the system, and

$$Q(\mathbf{r}) = \lim_{\rho \to 0} \left\langle \frac{\Theta(\mathbf{r} - \rho)}{4\pi r^3} + (\ln \rho + \gamma_E) \delta(\mathbf{r}) \right\rangle.$$

 NRQED. The beginning Higher order corrections
 Electron in an external field

 Applications
 Higher order corrections

Higher order corrections.

▲□▶▲□▶▲≡▶▲≡▶ ≡ のへで

Electron in an external field Complex particles Higher order corrections

Electron in an external field

▲□▶▲□▶▲≡▶▲≡▶ ≡ のへで

Electron in an external field Complex particles Higher order corrections

Form factors of an electron

Radiative corrections to the electron scattering in the external field lead to appearance of nontrivial form factors:

$$F_{1}(q^{2}) = 1 - \frac{q^{2}}{m^{2}} \left[\frac{1}{3} \left(\ln \frac{m}{2\Lambda} + \frac{5}{6} - \frac{3}{8} \right) \frac{\alpha}{\pi} - \left(\frac{3}{4} \zeta(3) - \frac{\pi^{2}}{2} \ln 2 + \frac{49\pi^{2}}{432} + \frac{4819}{5184} \right) \left(\frac{\alpha}{\pi} \right)^{2} + \dots \right] \\ a_{e} F_{2}(q^{2}) = \left[\frac{\alpha}{2\pi} + \left(\frac{3}{4} \zeta(3) - \frac{\pi^{2}}{2} \ln 2 + \frac{\pi^{2}}{12} + \frac{197}{144} \right) \left(\frac{\alpha}{\pi} \right)^{2} + \dots \right] - \frac{\alpha}{\pi} \frac{q^{2}}{12m^{2}} + O(q^{4}),$$

where a_e is the anomalous magnetic moment. "Radiative" form factors determine corrections of orders α , α^2 , etc. to "renormalized" constants appeared in NRQED

$$\begin{cases} c_D = 1 + 2a_e + 8m^2 F'_1(0) \\ c_S = 1 + 2a_e, \\ c_F = 1 + a_e. \end{cases}$$

Electron in an external field Complex particles Higher order corrections

NRQED Lagrangian for the 3-point vertex

$$\begin{split} \mathcal{L}_{\mathrm{main}} &= \psi_{e}^{*} \left(-eA_{0} + c_{F} \frac{e}{2m} \sigma \mathbf{B} + c_{D} \frac{e}{8m^{2}} \left(\mathbf{D}\mathbf{E} - \mathbf{E}\mathbf{D} \right) + c_{S} \frac{ie}{8m^{2}} \sigma \cdot \left(\mathbf{D} \times \mathbf{E} - \mathbf{E} \times \mathbf{D} \right) \right) \psi_{e} \\ &+ \psi_{e}^{*} \left(c_{W} \frac{e}{8m^{3}} \left\{ \mathbf{D}^{2}, \sigma \mathbf{B} \right\} + c_{q^{2}} \frac{e}{8m^{3}} \sigma \cdot [\Delta \mathbf{B}] + c_{p'p} \frac{e}{8m^{3}} \left\{ \mathbf{D} \cdot \mathbf{B} \sigma \cdot \mathbf{D} \right\} \\ &+ c_{M} \frac{ie}{8m^{3}} \left\{ \mathbf{D} \cdot [\mathbf{D} \times \mathbf{B}] + [\mathbf{D} \times \mathbf{B}] \cdot \mathbf{D} \right\} \right) \psi_{e} \\ &+ \psi_{e}^{*} \left(c_{X_{1}} \frac{e}{128m^{4}} \left[\mathbf{D}^{2}, (\mathbf{D}\mathbf{E} + \mathbf{E}\mathbf{D}) \right] + c_{X_{2}} \frac{e}{64m^{4}} \left\{ \mathbf{D}^{2}, [\nabla, \mathbf{E}] \right\} + c_{X_{3}} \frac{e}{8m^{4}} \left[\Delta [\nabla, \mathbf{E}] \right] \\ &+ c_{Y_{1}} \frac{ie}{64m^{4}} \left\{ \mathbf{D}^{2}, \sigma \cdot \left(\mathbf{D} \times \mathbf{E} - \mathbf{E} \times \mathbf{D} \right) \right\} + c_{Y_{2}} \frac{ie}{4m^{4}} \epsilon_{ijk} \sigma^{i} D^{j} [\mathbf{D}\mathbf{E}] D^{k} \right) \psi_{e}. \end{split}$$

<ロ> <回> <回> <回> < 回> < 回> < 回> < 回</p>

NRQED. The beginning	Electron in an external field
Higher order corrections	
Applications	

1.
$$c_F = 1 + a_e$$
, $c_S = 1 + 2a_e$, $c_D = 1 + 2a_e + \frac{\alpha}{\pi} \frac{8}{3} \left[L - \frac{3}{8} \right]$,

2.
$$c_W = 1$$
, $c_{q^2} = \frac{a_e}{2} + \frac{\alpha}{\pi} \frac{4}{3} \left[L - \frac{3}{8} + \frac{1}{4} \right]$, $c_{p'p} = a_e$,
 $c_M = -\frac{a_e}{2} - \frac{\alpha}{\pi} \frac{4}{3} \left[L - \frac{3}{8} \right]$,
3. $c_{X_1} = 5 + 4a_e$, $c_{X_2} = 3 + 4a_e$, $c_{X_3} = \frac{\alpha}{\pi} \left[\frac{11}{15} L - \frac{59}{120} + \frac{1}{6} \right]$,

4.
$$c_{Y_1} = 3 + 4a_e$$
, $c_{Y_2} = -\frac{\alpha}{\pi} \frac{1}{3} \left[L - \frac{3}{8} + \frac{1}{2} \right]$.

$$L = \ln\left(\frac{m}{2\Lambda}\right) + \frac{5}{6}$$

Ξ.

◆□ → ◆□ → ◆三 → ◆三 → ◆○ →

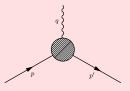
.

Electron in an external field Complex particles Higher order corrections

Complex particles

Electron in an external field Complex particles Higher order corrections

Form factors of a proton



If a particle of spin 1/2 has internal structure (proton) then the vertex function in the QED for this particle in accordance with requirements of relativistic invariance should has a form

$$\Gamma^{\mu} = \gamma^{\mu} F_1(q^2) + \frac{i\kappa_p}{2m_p} \sigma^{\mu\nu} q_{\nu} F_2(q^2), \qquad F_1(0) = F_2(0) = 1$$

The NRQED Lagrangian contribution for a proton:

$$\mathcal{L} = -\psi_p^* \left(c_F^{(p)} \frac{e}{2m} \boldsymbol{\sigma} \mathbf{B} + c_D^{(p)} \frac{e}{8m^2} \left[\mathbf{D} \mathbf{E} \right] + c_S^{(p)} \frac{e}{8m^2} \left\{ \boldsymbol{\sigma} \cdot [i \mathbf{D} \times \mathbf{E}] \right\} \right) \psi_p$$

Complex particles

Arbitrary spin. Spin-orbit interaction.

Leading order spin-orbit interaction for a particle with arbitrary spin may be obtained from classical electrodynamics¹. Since the acceleration of a particle is caused by an electric field E

$$Mrac{d\mathbf{v}}{dt} = Ze\mathbf{E}.$$

To the particle moving with velocity v through this electric field, there will appear to be a magnetic field

 $H_F = \mathbf{E} \times \mathbf{v}/c$

If this particle has a magnetic moment $\mu = g \mu_N(1/\hbar)$, it gives an interaction with the field E

$$H_E = -\mu \cdot \mathbf{H}_E = -\mu \left(\mathbf{E} imes rac{\mathbf{v}}{c}
ight),$$

¹N.F. Ramsey, Phys. Rev. **90**, 232 (1953).

Electron in an external field Complex particles Higher order corrections

Arbitrary spin. Magnetic moment.

In addition, there will be purely kinematical Thomas precession¹

$$H_{T} = \hbar \mathbf{I} \frac{d\mathbf{v}}{dt} \frac{\mathbf{v}}{2c^{2}} = \hbar \mathbf{I} \frac{Ze}{2Mc} \left(\mathbf{E} \times \frac{\mathbf{v}}{c} \right)$$

Summing up, one gets $(\gamma = g\mu_N/\hbar)$:

$$H_{A} = -\mu \left[1 - \frac{Ze}{2Mc\gamma} \right] \left(\mathbf{E} \times \frac{\mathbf{v}}{c} \right)$$

¹L.H. Thomas, Nature (London) **117**, 514 (1926).

Electron in an external field Complex particles Higher order corrections

Deuteron quadruple moment

An interaction of a *quadruple moment* and a *charge* is derived as follows. Quadruple tensor of a particle of spin s is defined:

$$Q^{ij} = \frac{3Qe}{2s(2s-1)} \left[\left(s^i s^j + s^j s^i \right) - \frac{2s(s+1)}{3} \delta^{ij} \right],$$

it is normalized by the condition,

$$Q^{zz}(m_z) = rac{Qe}{s(2s-1)} \left[3m_z^2 - s(s+1)
ight], \qquad Q^{zz}(s) = Qe.$$

Then, an interaction with a charge is expressed:

$$H_q = Ze^2 \frac{Q^{ij} n_i n_j}{2r^3} = \frac{Ze^2 Q}{2s(2s-1)} \frac{3 (\mathbf{ns})^2 - \mathbf{n}^2 \mathbf{s}^2}{r^3}.$$

 NRQED. The beginning Higher order corrections
 Electron in an external field Complex particles

 Applications
 Higher order corrections

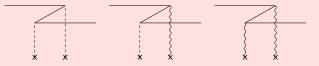
Higher order corrections

▲□▶▲□▶▲≡▶▲≡▶ ≡ のへで

NRQED. The beginning Higher order corrections Applications Higher order corrections

Z-diagrams

Another kind of contributions for a Dirac electron in an external field, which is related to the order $m\alpha^6$, comes from two-photon exchange diagrams in QED:



$$V_{CC} = -\int \frac{d\mathbf{q}_1}{(2\pi)^3} \int \frac{d\mathbf{q}_2}{(2\pi)^3} \frac{4\pi}{q_1^2} \frac{4\pi}{q_2^2} (2\pi)^3 \delta(\mathbf{q}_1 + \mathbf{q}_2 - \mathbf{q}) \times \frac{u^+(p')\Lambda_-(p+q_1)u(p)}{m + E - E_p - E_{p+q_1} - E_{p'}}$$

NRQED

where $\Lambda_{-}(p) = \frac{E_{p} - \alpha p - \beta m}{2E_{p}}$ is a projection operator on the subspace of states of negative energies.

Relevant contribution that appears in NRQED

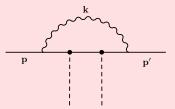
V.I. Korobov

 $\frac{e^2}{8m^3}\mathbf{E}^2$

Electron in an external field Complex particles Higher order corrections

<ロ> <回> <回> <回> < 回> < 回> < 回> < 回</p>

Self-energy diagram with two Coulomb legs



$$H_{2\text{-leg}}^{\text{se}} = \frac{4\pi\alpha(Z\alpha)^2}{m^2} \left(\frac{139}{128} - \frac{1}{2}\ln 2\right) \delta(\mathbf{r})$$

Applications

Precision Spectroscopy of HD⁺

▲□▶▲□▶▲≡▶▲≡▶ ≡ のへで

Precision Spectroscopy of HD⁺

V.I. Korobov NRQED

Precision Spectroscopy of HD⁺

CODATA18 values and new experiments

The CODATA18 constants:

Rydberg constant	$R_{\infty} = 10973731.568160(21)\mathrm{m}^{-1}$	$1.2 \cdot 10^{-12}$
deuteron mass	$m_d = 2.013553212745(40)$ u	$2.0 \cdot 10^{-11}$
electron mass	$m_e = 5.48579909065(16)\cdot10^{-4}$ u	$2.9 \cdot 10^{-11}$

Electron-to-proton mass ratio:

	m_p/m_e	m_d/m_p
CODATA18	1836.15267343(11)	1.99900750139(10)
Blaum ¹	1836.152673358(55)	1.999007501228(59)
Myers ²	1836.152673535(55)	1.999007501274(38)

¹) S. Rau *et al.* Nature **585**, 43 (2020). ²) D.J. Fink, E.G. Myers. Phys. Rev. Lett. **124**, 013001 (2020).

イロン 不同 とくほう イヨン

Precision Spectroscopy of HD⁺

HD⁺. Theory and experiment

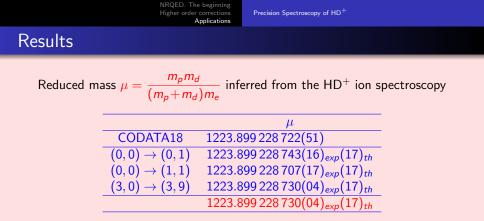
Theoretical and experimental spin-averaged transition frequencies (in kHz). CODATA18 values of fundamental constants were used in the calculations.

$(L, v) \rightarrow (L', v')$	theory	experiment
(0,0) ightarrow(1,0)	1314925752.932(19)	1314925752.910(17)
(0,0) ightarrow(1,1)	58 605 052 163.9(0.5)	58 605 052 164.24(86)
$(3,0) \rightarrow (3,9)$	415 264 925 502.8(3.3)	415 264 925 501.8(1.3)

	NRQED. The Higher order A		Precision Spectroscopy of ${\sf HD}^+$			
Results						
Reduced mass $\mu = rac{m_p m_d}{(m_p + m_d) m_e}$ inferred from the HD ⁺ ion spectroscopy						
			μ			
	CODATA18	1223.8	399 228 722(51)			
	(0,0) ightarrow (0,1)	1223.8	$399228743(16)_{e\times p}(17)_{th}$			
	(0,0) ightarrow(1,1)	1223.8	$399228707(17)_{exp}(17)_{th}$			
	(3 , 0) ightarrow (3 , 9)		$399228730(04)_{exp}(17)_{th}$			
		1223.8	$399228730(04)_{exp}(17)_{th}$			

Relative uncertainty: $u_r(\mu) = 1.4 \times 10^{-11}$.

▲□▶▲圖▶▲≣▶▲≣▶ ■ 少�?



Relative uncertainty: $u_r(\mu) = 1.4 \times 10^{-11}$.

Mass ratios from spectroscopy and Myers' experiment:

 $m_p/m_e = 1836.152673476(44), \qquad m_d/m_e = 3670.482967763(88),$

Precision Spectroscopy of HD⁺

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Thank you for your attention!

V.I. Korobov NRQED