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Concept of NRQED

QED

LQED = ψ̄ [(i∂ − e A) γ −m]ψ − 1

4
FµνF

µν ,

⇓
Nonrelativistic QED

LNRQED

⇓
Effective Hamiltonian

Heff =
∑
i

P2
i

2mi
+ e2

∑
j>i

ZiZj

rij
+ higher order corrections

(Here Pi = pi + eA)
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Nonrelativistic QED Lagrangian

The Lagrangian for NRQED is built out nonrelativistic (two-component)
Pauli spinor fields ψ for each of the electron, positron, muon, proton, etc.
Photons are treated in the same fashion as in QED.

Leff = −1

2
(E 2 − B2) + ψ∗e

(
i∂t − eϕ+

D2

2m
+

D4

8m3
+ . . .

)
ψe

+ψ∗e
(
cF

e
2mσB + cD

e
8m2

[
DE
]

+ cS
e

8m2

{
σ ·[iD×E]

})
ψe

+ higher order terms + muon, proton, etc.

− d1

mem`
(ψ∗eσeψe)

(
ψ∗`σ`ψ`

)
+ d2

mem`
(ψ∗eψe)

(
ψ∗`ψ`

)
+ . . .

where D = ∇− ieA.
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Wilson coefficients

Wilson coefficients for the electron interactions with external field:

cD = 1 + 2κ+ α
π

8
3

[
ln
(
m
2Λ

)
+ 5

6− 3
8

]
,

cS = 1 + 2κ,

cF = 1 + κ.

Wilson coefficients for contact interactions:

d1 = (Zα)2 2

m2
e −m2

`

ln

(
me

m`

)
,

d2 = (Zα)2

{
7

3
−2 ln

( m

2Λ

)
+

2

m2
e −m2

`

[
m2

e ln

(
m`

µ

)
−m2

` ln

(
me

µ

)]}
.
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NRQED requirements

Requirements for the NRQED Lagrangian interaction terms:

Hermiticity;

Gauge invariance. We use covariant derivatives: D = ∇−ieA;

Parity. The Lagrangian should be parity even;

Time reversal. The Lagrangian should be even under time reversal
transformation.

Coupling constants are determined by requiring that predictions of
QED and NRQED agree to a desired order in (v/c);

Contributions from QED that involve relativistic loop momenta are
absorbed into NRQED in a form of various local interactions.
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Following1 we use operators: iDt , iD,B,E,σ, as building blocks of the
Lagrangian and expand it into a series of inverse powers of the electron
mass m:

L =
∑
n=0

ψ∗e
On

mn
ψe .

iD E B σ
P − − + +
T − + − −

M1 M2 M2 M0

Spatial parity and time reversal symmetries, and mass dimension of
operators.

1Gil Paz. An introduction to NRQED. Modern Physics Letters A. 30, 1550128
(2015).
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Lagrangian NRQED

Using symmetries imposed on the Lagrangian, one can show that the
form L is unique, and the coefficients: cF , cD , etc. can be
unambiguously obtained from a comparison with the scattering amplitude
in QED after choosing the NRQED regularization method.

The only arbitrariness remains with the ambiguity of choosing a basis for
homogeneous polynomials:

p2 + p′2, pp′ or (p + p′)2, (p− p′)2

q

p

k

p′
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Examples of basic interactions in NRQED. Vertices.

Coulomb ”dipole” A2

e −e
[

p′+p
2m

]
e2
[
δij

2m

]
p p′ p p′ p p′

Darwin’s Fermi’s spin–orbit
−e
[

1
8m2

]
q2 e

[
i

2m

]
(q×σ) e

[
i

4m2

]
(p′×p) · σ

p p′ p p′ p p′

Here q = p′−p is a transferred impulse of the particle.
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NRQED propagators

A natural choice of a gauge for the electromagnetic field is the Coulomb
gauge (kA = 0)

G 00 =
1

k2
, — the Coulomb photon propagator,

G ij =
δij − kikj/k2

k2 + iε
,

G 0i = G i0 = 0, i , j = 1, 2, 3.

— the transverse photon propagator,

Propagators for massive particles

1

E − p2/(2m) + iε
.
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Zero-order approximation
Zero-order Lagrangian is

L
(0)
eff = −1

2
(E 2 − B2) +

∑
n

ψ∗n

(
i∂t − eZnϕ+

D2

2mn

)
ψn .

By variation of field functions ψn and quantization of the electromagnetic
field, one gets the nonrelativistic Hamiltonian of a system of particles
interacting with an electromagnetic field:

H̆0 =
∑
i

P2
i

2mi
+ e2

∑
j>i

ZiZj

rij
+
∑
λ=1,2

∫
d3k k a+

kλakλ. (∗)

Here Pi = pi + eZiA. Operators A(r) are presented in terms of photon
creation and annihilation operators

A(r) = (2π)−3/2

∫
d3k√

2k

(
a+
kλe
−ikr + akλe

ikr
)

eλ.

Hamiltonian (*) is a convenient starting point for building up the
nonrelativistic quantum electrodynamics (NRQED) in the Hamiltonian
form.
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Nonstationary perturbation theory

Let H = H0 + V , then we can expand K in increasing powers of V :

K(2, 1) = K0(2, 1) + K (1)(2, 1) + K (2)(2, 1) + . . .

where K0(2, 1) is a propagator (or a Green’s function) of the unperturbed
Hamiltonian:

K0(2, 1) = e−iH0(t2−t1),

[i∂/∂t2 − H0(2)]K0(2, 1) = iδ(2, 1).

For instantaneous interaction:

K (1)(2, 1) = −i
∫

K0(2, 3)V (3)K0(3, 1) dτ3,

p p′

For a transverse photon:

K (1)(2, 1) = −i
∫

K0(2, 4)V (4)G(4, 3)K0(4, 3)V (3)K0(3, 1)dτ3dτ4,

Functions V (3) and V (4) are some vertex functions of inter-
action with the electro-magnetic field.

p p− k

k

p
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Perturbation theory for a stationary state

∆E =

∫ N∏
i

dr′i

N∏
j

drj d(t′ − t)
1

(2π)4

∫
d4kψ∗0 (rj , t)V (2){

e−i(k0t−krj )

[
4π

k2 +iε

(
δij −

kikj
k2

)]
e i(k0t

′−kri ) K0(2, 1)

}
V (1)ψ0(ri , t

′)

Integrating over t one gets

∆E =
1

(2π)4 i

∫
d4k

k2 +iε
4π

(
δij−

kikj
k2

)〈
ψ0

∣∣∣∣V (2) e ikra 1

E0−k0−H0
e−ikrb V (1)

∣∣∣∣ψ0

〉
−δab δm 〈ψ0|ψ0〉

or performing integration over k0 (k = |k|):

∆E =
1

(2π)3

∫
d3k

2k
4π

(
δij−

kikj
k2

)〈
ψ0

∣∣∣∣V (2) e ikra 1

E0−k−H0
e−ikrb V (1)

∣∣∣∣ψ0

〉
−δab δm 〈ψ0|ψ0〉
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Leading order relativistic and radiative
contributions.
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Breit-Pauli Hamiltonian

q

p1

p2

p′1

p′2

q

p1

p2

p′1

p′2

q

p1

p2

p′1

p′2

e2
〈
i

∣∣∣∣ 1
q2

∣∣∣∣ f〉 −e2 c
(2)
D

〈
i

∣∣∣∣∣ 1
8m2

2

∣∣∣∣∣ f
〉

e2 c
(2)
S

〈
i

∣∣∣∣∣ iσ2[q×p2]

4m2
2

q2

∣∣∣∣∣ f
〉

q

p1

p2

p′1

p′2

q

p1

p2

p′1

p′2

q

p1

p2

p′1

p′2

−e2

〈
i

∣∣∣∣∣∣ pi1p
j
2

m1m2

 q2−qi qj

q4

 ∣∣∣∣∣∣ f
〉

e2 c
(2)
F

〈
i

∣∣∣∣∣ iσ2[q×p1]

2m1m2q2

∣∣∣∣∣ f
〉

−e2 c
(1)
F

c
(2)
F

〈
i

∣∣∣∣∣ [q×σ1][q×σ2]

4m1m2q2

∣∣∣∣∣ f
〉
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Breit-Pauli Hamiltonian in the coordinate space

Taking into account the relativistic correction to the kinetic energy

E = c
√
m2c2 + p2 = mc2 + p2/2m + p4/8c2m3 + . . .

The Breit-Pauli Hamiltonian takes a form (rij = rj−ri ):

HB = − 1

c2

∑
i

p4
i

8m3
i

+ UB ,

UB = − e2

c2

∑
i>j

ZiZj

2mimj

(
pipj

rij
+

rij(rijpi )pj

r 3
ij

)
− e2

c2

∑
i>j

4πδ(rij)ZiZj

(
c

(i)
D

8m2
i

+
c

(j)
D

8m2
j

)

− e2

c2

∑
j 6=i

ZiZjc
(j)
S [rij×pj ]sj
2m2

j r
3
ij

− e2

c2

∑
i>j

ZiZj

(
c

(i)
F [rij × pj ]si − c

(j)
F [rij × pi ]sj

)
mimj r 3

ij

+
∑
i>j

{[
µiµj

r 3
ij

− 3
(µi rij)(µj rij)

r 5
ij

]
− 8π

3
µiµjδ(rij)

}
.

Here µi = c
(i)
F Zi (e~/2mic)σi is an operator of magnetic moment of a

particle.
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Self-energy correction in the NRQED. Low energy.

k < Λ

p p− k

k

p

The ultrasoft scale contribution may be expressed:

EL =
2α

3πm2

∫ Λ

0

k dk

〈
p

(
1

E0 − H − k

)
p

〉
− δm 〈ψ0|ψ0〉.

The integrand may be further rearranged using the operator identity

(E0−H−k)−1 = −1/k − 1

k2
(E0−H) +

1

k2

(E0 − H)2

E0−H−k
that results in

EL =
2α

3πm2

[
−
〈
p2
〉

Λ + 〈p [H,p]〉 ln Λ +

∫
dk

k

〈
p

(E0−H)2

E0−H−k
p

〉]
−δm 〈ψ0|ψ0〉.
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Self-energy correction in the NRQED. High energy.

Let us consider the Darwin term in the NRQED Lagrangian

cD
e

8m2

[
DE
]

For an electron the coefficients cD is defined as follows

cD = 1+2ae +
α

π

8

3

[
ln
( m

2Λ

)
+

5

6
− 3

8

]
+ . . .

where ae is the anomalous magnetic moment of an electron, Λ is a
NRQED cutoff parameter.
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Self-energy correction in the NRQED. High energy.

Here we take the mα5 order contribution from the NRQED Lagrangian
Darwin term:

EH = − c
(5)
D

8m2
4πZα

〈
δ(r)

〉
, c

(5)
D = 2

α

2π
+
α

π

8

3

[
ln
( m

2Λ

)
+

5

6
− 3

8

]
.

Then we get for the self-energy contribution for S states

EH =
α

3πm2

[
lnα−2 + ln

Eh

Λ
− ln 2 +

5

6

]
4πZα

〈
δ(r)

〉
.

Summing up the EL and EH contributions we see that the cutoff
parameter Λ cancels out and we’ve got a finite expression for the
self-energy contribution.
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Self-energy correction for a bound state

Replacing Eh → 2R∞, we arrive at the well-known expression1

∆Ese =
4α(Zα)

3m2

[
lnα−2 − ln[k0(n, l)/R∞] +

5

6

]
〈ψ|δ(r)|ψ〉

+
α(Zα)

2πm2

〈
ψ

∣∣∣∣ r × p

r3
· σ

2

∣∣∣∣ψ〉 .
where ln(k0/R∞) is the Bethe logarithm

ln [k0(n, l)/R∞] =
∑
n

p0npn0(En−E0) ln(|En−E0|/R∞)

p0npn0(En − E0)
,

1H.A. Bethe and E.E. Salpeter, Quantum mechanics of one– and two–electron
atoms, Plenum Publishing Co., New York, 1977.
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Leading order radiative corrections. Recoil effects

k1 k2

p1

p2

p′1

p′2

δ(3)E = α3

[
4Z

3

(
− lnα2 − β(L, v) +

5

6
− 1

5

)
〈δ(r)〉

+
2Z 2

3M

(
− lnα− 4β(L, v) +

31

3

)
〈δ(r)〉 − 14Z 2

3M
Q(r)

]
,

where

β(L, v) =
〈J(H0−E0) ln ((H0−E0)/R∞) J〉

〈[J, [H0, J]]/2〉

is the Bethe logarithm, J =
∑

a zapa/ma is the electric current density operator
of the system, and

Q(r) = lim
ρ→0

〈
Θ(r − ρ)

4πr 3
+ (ln ρ+ γE )δ(r)

〉
.
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Form factors of an electron

Radiative corrections to the electron scattering in the external field lead
to appearance of nontrivial form factors:

F1(q2) = 1− q2

m2

[
1
3

(
ln m

2Λ
+ 5

6
− 3

8

)
α
π
−
(

3
4
ζ(3)− π2

2
ln 2+ 49π2

432
+ 4819

5184

) (
α
π

)2
+. . .

]
aeF2(q2) =

[
α
2π

+
(

3
4
ζ(3)− π2

2
ln 2+ π2

12
+ 197

144

) (
α
π

)2
+ . . .

]
− α

π
q2

12m2 + O(q4),

where ae is the anomalous magnetic moment. ”Radiative” form factors
determine corrections of orders α, α2, etc. to ”renormalized” constants
appeared in NRQED

cD = 1 + 2ae + 8m2F ′1(0)

cS = 1 + 2ae ,

cF = 1 + ae .
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NRQED Lagrangian for the 3-point vertex

q

p′p

Lmain = ψ∗e

(
−eA0 + cF

e

2m
σB + cD

e

8m2

(
DE−ED

)
+ cS

ie

8m2
σ ·
(

D×E−E×D
))

ψe

+ψ∗e

(
cW

e

8m3

{
D2,σB

}
+ cq2

e

8m3
σ ·[∆B] + cp′p

e

8m3

{
D·B σ ·D

}
+cM

ie

8m3

{
D·[D×B] + [D×B]·D

})
ψe

+ψ∗e

(
cX1

e

128m4

[
D2, (DE + ED)

]
+ cX2

e

64m4

{
D2, [∇,E]

}
+ cX3

e

8m4

[
∆ [∇,E]

]
+cY1

ie

64m4

{
D2,σ ·

(
D×E−E×D

)}
+ cY2

ie

4m4
εijkσ

iD j [DE]Dk

)
ψe .
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1. cF = 1 + ae , cS = 1 + 2ae , cD = 1+2ae +
α

π

8

3

[
L− 3

8

]
,

2. cW = 1, cq2 =
ae
2

+
α

π

4

3

[
L− 3

8
+

1

4

]
, cp′p = ae ,

cM = −ae
2
−α
π

4

3

[
L− 3

8

]
,

3. cX1 = 5+4ae , cX2 = 3+4ae , cX3 =
α

π

[
11

15
L− 59

120
+

1

6

]
,

4. cY1 = 3+4ae , cY2 = −α
π

1

3

[
L− 3

8
+

1

2

]
.

L = ln
( m

2Λ

)
+

5

6
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Form factors of a proton

q

p′p

If a particle of spin 1/2 has internal structure (proton) then the vertex
function in the QED for this particle in accordance with requirements of
relativistic invariance should has a form

Γµ = γµF1(q2) +
iκp
2mp

σµνqνF2(q2), F1(0) = F2(0) = 1.

The NRQED Lagrangian contribution for a proton:

L = −ψ∗p
(
c

(p)
F

e

2m
σB + c

(p)
D

e

8m2

[
DE
]

+ c
(p)
S

e

8m2

{
σ ·[iD×E]

})
ψp
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Arbitrary spin. Spin-orbit interaction.

Leading order spin-orbit interaction for a particle with arbitrary spin I
may be obtained from classical electrodynamics1. Since the acceleration
of a particle is caused by an electric field E

M
dv

dt
= ZeE.

To the particle moving with velocity v through this electric field, there
will appear to be a magnetic field

HE = E× v/c

If this particle has a magnetic moment µ = gµN(I/~), it gives an
interaction with the field E

HE = −µ ·HE = −µ
(

E× v

c

)
,

1N.F. Ramsey, Phys. Rev. 90, 232 (1953).
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Arbitrary spin. Magnetic moment.

In addition, there will be purely kinematical Thomas precession1

HT = ~I
dv

dt

v

2c2
= ~I

Ze

2Mc

(
E× v

c

)
Summing up, one gets (γ = gµN/~):

HA = −µ
[

1− Ze

2Mcγ

](
E× v

c

)

1L.H. Thomas, Nature (London) 117, 514 (1926).
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Deuteron quadruple moment

An interaction of a quadruple moment and a charge is derived as follows.
Quadruple tensor of a particle of spin s is defined:

Q ij =
3Qe

2s(2s−1)

[(
s i s j + s js i

)
− 2s(s+1)

3
δij
]
,

it is normalized by the condition,

Qzz(mz) =
Qe

s(2s−1)

[
3m2

z − s(s+1)
]
, Qzz(s) = Qe.

Then, an interaction with a charge is expressed:

Hq = Ze2 Q
ijninj
2r3

=
Ze2Q

2s(2s−1)

3 (ns)2 − n2s2

r3
.

V.I. Korobov NRQED



NRQED. The beginning
Higher order corrections

Applications

Electron in an external field
Complex particles
Higher order corrections

Higher order corrections

V.I. Korobov NRQED



NRQED. The beginning
Higher order corrections

Applications

Electron in an external field
Complex particles
Higher order corrections

Z -diagrams

Another kind of contributions for a Dirac electron in an external field, which is
related to the order mα6, comes from two-photon exchange diagrams in QED:

VCC = −
∫

dq1

(2π)3

∫
dq2

(2π)3

4π

q2
1

4π

q2
2

(2π)3δ(q1+q2−q)× u+(p′)Λ−(p + q1)u(p)

m + E − Ep − Ep+q1 − Ep′

where Λ−(p) =
Ep−αp−βm

2Ep
is a projection operator on the subspace of states of

negative energies.
Relevant contribution that appears in NRQED

e2

8m3
E2
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Self-energy diagram with two Coulomb legs

p

k

p′

Hse
2-leg =

4πα(Zα)2

m2

(
139

128
− 1

2
ln 2

)
δ(r)
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CODATA18 values and new experiments

The CODATA18 constants:

Rydberg constant R∞ = 10 973 731.568 160(21) m−1 1.2·10−12

deuteron mass md = 2.013 553 212 745(40) u 2.0·10−11

electron mass me = 5.485 799 090 65(16)·10−4 u 2.9·10−11

Electron-to-proton mass ratio:

mp/me md/mp

CODATA18 1836.15267343(11) 1.99900750139(10)
Blaum1 1836.152673358(55) 1.999007501228(59)
Myers2 1836.152673535(55) 1.999007501274(38)

1) S. Rau et al. Nature 585, 43 (2020).
2) D.J. Fink, E.G. Myers. Phys. Rev. Lett. 124, 013001 (2020).
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HD+. Theory and experiment

Theoretical and experimental spin-averaged transition frequencies (in
kHz). CODATA18 values of fundamental constants were used in the
calculations.

(L, v)→ (L′, v ′) theory experiment
(0, 0)→ (1, 0) 1 314 925 752.932(19) 1 314 925 752.910(17)
(0, 0)→ (1, 1) 58 605 052 163.9(0.5) 58 605 052 164.24(86)
(3, 0)→ (3, 9) 415 264 925 502.8(3.3) 415 264 925 501.8(1.3)
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Results

Reduced mass µ =
mpmd

(mp+md)me
inferred from the HD+ ion spectroscopy

µ
CODATA18 1223.899 228 722(51)

(0, 0)→ (0, 1) 1223.899 228 743(16)exp(17)th
(0, 0)→ (1, 1) 1223.899 228 707(17)exp(17)th
(3, 0)→ (3, 9) 1223.899 228 730(04)exp(17)th

1223.899 228 730(04)exp(17)th

Relative uncertainty: ur (µ) = 1.4× 10−11.

Mass ratios from spectroscopy and Myers’ experiment:

mp/me = 1836.152673476(44), md/me = 3670.482967763(88),
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Thank you for your attention!

V.I. Korobov NRQED
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