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Isometric embedding

Friedman theorem (1961)

An arbitrary D-dimensional
pseudo-Riemannian spacetime can
be locally isometrically embedded in
a N-dimensional
pseudo-Riemannian space of
suitable signature,

N >D(D+1)/2.

Embedding class: p = N — D.

Main object:
embedding function y“(z*).

Induced metric:
uv = uyaazzyb"?aby
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An arbitrary D-dimensional
pseudo-Riemannian spacetime can
be locally isometrically embedded in
a N-dimensional
pseudo-Riemannian space of
suitable signature,

N >D(D+1)/2.

Embedding class: p = N — D.

Main object:
embedding function y“(z*).

Induced metric:
uv = ,uyaazzyb"?ab

Example: sphere embedding
y' =z = Rcos#,

y?> =y = Rsinf cos ¢,

y® = z = Rsinfsin ¢.
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Method of exact embeddings construction

Induced metric condition:

uv = 8uya81/yb77aba

Features:
@ System of nonlinear PDEs,
@ No general methods of solution,
e Dramatically simplifies, if the variables can be separated,
@ Gives an explicit form of a surface.

Useful when the metric has relatively simple form.
How to separate the variables?
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o List all representations of G
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initial vector <y10)
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Original method was invented by S. A. Paston (arXiv:1202.1204).
Generalization (A. S., M. M., S. P.): 2107.00752.

Main idea: use not the whole symmetry group G,

but rather its abelian subgroups.

Abelian transformation w.r.t. parameter ¢ can be represented by
(pseudo)-rotation in an ambient spacetime:

v =10 in( e on wir), 0
7 = T cosz(at + i) @

where ¢ = £1 and the signature of {y!,4?} is (£e, +1).



An example: SO(4)

Initial vector: yyp = (R, 0,0,0),
Vi(g) = SO(4):

()= (% D)

y' = Rcos#,

y? = Rsin6 cos ¢,

y® = Rsin# sin ¢ cos x,
y® = Rsin 6 sin ¢ sin .

The interval: ds? =
R2(dx? + sin? x(d#? + sin? 0d¢p?))


http://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=sm&paperid=4325&option_lang=rus
http://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=sm&paperid=4325&option_lang=rus

An example: SO(4)

Initial vector: yyp = (R, 0,0,0),
Vi(g) = SO(4):

()= (% D)

y' = Rcos#,

y? = Rsin6 cos ¢,

y® = Rsin# sin ¢ cos x,
y® = Rsin 6 sin ¢ sin .

The interval: ds? =

R%(dx? + sin? x(d0? + sin? 0dp?))

There is another way:

y' = Rcosy cosb,

y?> = Rcosy sin®,

y® = Rsiny cos ¢,

y® = Rsiny sin ¢
(Hopf coordinates).
The interval: ds*> =
R%(dx? + cos?® xdf? + sin? yd¢?))
N. Vilenkin, Polyspherical and
orispherical functions (1965)


http://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=sm&paperid=4325&option_lang=rus
http://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=sm&paperid=4325&option_lang=rus

Another example: Godel universe (2004.05882)

ds® = dt* + 2usinh? xdtdp — dx?® — (sinh? y — (1 — p?)sinh? y)d¢? — dz?
(3)
The symmetry is SO(2,1) ® SO(2) ® R.
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3)
The symmetry is SO(2,1) ® SO(2) ® R.
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Another example: Godel universe (2004.05882)

ds® = dt* + 2usinh? xdtdp — dx?® — (sinh? y — (1 — p?)sinh? y)d¢? — dz?
(3)

The symmetry is SO(2,1) ® SO(2) ® R.
Ansatz:

= Ve i (zat) o2 = B(x)sin(mo — pu),

g = €20 cog (yEat) , = B cos(me - 81, @)

(67

y'= Cq(;() sin(ne), y° = Cflx) cos(ne), y° = f(x). y" ==

Solution:




Rotating BTZ black hole (2107.00752)

2 4 2 4 2
ds? = (—M + ;) dv? + Jdvdf — %er - %drd@ — 2402 (6)



Rotating BTZ black hole (2107.00752)

J? J
2 2
yt = %sin <g0 + j(a% — r)) c Yt = %cos <g0 + j(oz% - T)) ,
3 = \[72 + J—2 sin — lalrctam 2ar
4= 402 LA J ’
4 = \[72 + J—Q cos — laurctaua 2ar
¥y = 402 LA J ’

J2 (7)

2
ds? = <—M + z2> dv? + Jdvdd — 2 ar? — 1 drag — r2a0?. (6)
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Conclusion

@ Surfaces are described by embedding function,
@ Their form can be found from the induced metric condition,

@ The best way to solve the corresponding PDE system is to
separate the variables,

@ It can be done using S. A. Paston’s method (through finding the
representation of a full symmetry group of the metric) or its
generalization (the Abelian subgroups of this group).



