How to construct a symmetric surface?

Anton Sheykin
St. Petersburg State University

October 11th, 2022

Isometric embedding

Friedman theorem (1961)
An arbitrary D-dimensional pseudo-Riemannian spacetime can be locally isometrically embedded in
a N-dimensional pseudo-Riemannian space of
suitable signature,
$N \geq D(D+1) / 2$.
Embedding class: $p=N-D$.
Main object: embedding function $y^{a}\left(x^{\mu}\right)$.

Induced metric:

$$
g_{\mu \nu}=\partial_{\mu} y^{a} \partial_{\nu} y^{b} \eta_{a b}
$$

Isometric embedding

Friedman theorem (1961)
An arbitrary D-dimensional pseudo-Riemannian spacetime can be locally isometrically embedded in a N-dimensional pseudo-Riemannian space of suitable signature,
$N \geq D(D+1) / 2$.
Embedding class: $p=N-D$.
Main object: embedding function $y^{a}\left(x^{\mu}\right)$.

Induced metric:

$$
g_{\mu \nu}=\partial_{\mu} y^{a} \partial_{\nu} y^{b} \eta_{a b}
$$

Example: sphere embedding
$y^{1}=x=R \cos \theta$,
$y^{2}=y=R \sin \theta \cos \phi$,
$y^{3}=z=R \sin \theta \sin \phi$.

Method of exact embeddings construction

Induced metric condition:

$$
g_{\mu \nu}=\partial_{\mu} y^{a} \partial_{\nu} y^{b} \eta_{a b}
$$

Features:

- System of nonlinear PDEs,
- No general methods of solution,

Method of exact embeddings construction

Induced metric condition:

$$
g_{\mu \nu}=\partial_{\mu} y^{a} \partial_{\nu} y^{b} \eta_{a b}
$$

Features:

- System of nonlinear PDEs,
- No general methods of solution,
- Dramatically simplifies, if the variables can be separated,
- Gives an explicit form of a surface.

Method of exact embeddings construction

Induced metric condition:

$$
g_{\mu \nu}=\partial_{\mu} y^{a} \partial_{\nu} y^{b} \eta_{a b}
$$

Features:

- System of nonlinear PDEs,
- No general methods of solution,
- Dramatically simplifies, if the variables can be separated,
- Gives an explicit form of a surface.

Useful when the metric has relatively simple form.

Method of exact embeddings construction

Induced metric condition:

$$
g_{\mu \nu}=\partial_{\mu} y^{a} \partial_{\nu} y^{b} \eta_{a b}
$$

Features:

- System of nonlinear PDEs,
- No general methods of solution,
- Dramatically simplifies, if the variables can be separated,
- Gives an explicit form of a surface.

Useful when the metric has relatively simple form. How to separate the variables?

What is a symmetric surface?

A surface is G-symmetric, if it transforms into itself under $\tilde{G} \sim G-$ a subgroup of the group of motion \mathcal{P} of the ambient spacetime.

What is a symmetric surface?

A surface is G-symmetric, if it transforms into itself under $\tilde{G} \sim G-$ a subgroup of the group of motion \mathcal{P} of the ambient spacetime. There is a homomorphism $V: G \rightarrow \mathcal{P}$.

What is a symmetric surface?

A surface is G-symmetric, if it transforms into itself under $\tilde{G} \sim G-$ a subgroup of the group of motion \mathcal{P} of the ambient spacetime. There is a homomorphism $V: G \rightarrow \mathcal{P}$.
For the ambient Minkowski spacetime \tilde{G} is a subgroup of Poincare group $S O(m, n) \triangleright \mathbb{T}^{m, n}$

What is a symmetric surface?

A surface is G-symmetric, if it transforms into itself under $\tilde{G} \sim G-$ a subgroup of the group of motion \mathcal{P} of the ambient spacetime. There is a homomorphism $V: G \rightarrow \mathcal{P}$.
For the ambient Minkowski spacetime \tilde{G} is a subgroup of Poincare group $S O(m, n) \triangleright \mathbb{T}^{m, n}$

How to construct a symmetric surface?

- Choose the dimension of the ambient spacetime ($D+p$ is perfect),

How to construct a symmetric surface?

- Choose the dimension of the ambient spacetime ($D+p$ is perfect),
- List all representations of \tilde{G} which fit into it,

How to construct a symmetric surface?

- Choose the dimension of the ambient spacetime ($D+p$ is perfect),
- List all representations of \tilde{G} which fit into it,
- Write down the generatrix:
initial vector $\binom{y_{0}}{1}$
- Transform it using the matrices of \tilde{G} to obtain the embedding function:

$$
\binom{y}{1}=\left(\begin{array}{ll}
\Lambda & a \\
0 & 1
\end{array}\right)\binom{y_{0}}{1}
$$

How to construct a symmetric surface?

- Choose the dimension of the ambient spacetime ($D+p$ is perfect),
- List all representations of \tilde{G} which fit into it,
- Write down the generatrix: initial vector $\binom{y_{0}}{1}$
- Transform it using the matrices of \tilde{G} to obtain the embedding function:

$$
\binom{y}{1}=\left(\begin{array}{ll}
\Lambda & a \\
0 & 1
\end{array}\right)\binom{y_{0}}{1}
$$

Original method was invented by S. A. Paston (arXiv:1202.1204).

Original method was invented by S. A. Paston (arXiv:1202.1204). Generalization (A. S., M. M., S. P.): 2107.00752.

Original method was invented by S. A. Paston (arXiv:1202.1204). Generalization (A. S., M. M., S. P.): 2107.00752. Main idea: use not the whole symmetry group G, but rather its abelian subgroups.

Original method was invented by S. A. Paston (arXiv:1202.1204). Generalization (A. S., M. M., S. P.): 2107.00752. Main idea: use not the whole symmetry group G, but rather its abelian subgroups.
Abelian transformation w.r.t. parameter t can be represented by (pseudo)-rotation in an ambient spacetime:

$$
\begin{array}{r}
y^{1}=\frac{f(r)}{\alpha} \sqrt{\varepsilon} \sin (\sqrt{\varepsilon}(\alpha t+w(r))) \\
y^{2}=\frac{f(r)}{\alpha} \cos (\sqrt{\varepsilon}(\alpha t+w(r))) \tag{2}
\end{array}
$$

where $\varepsilon= \pm 1$ and the signature of $\left\{y^{1}, y^{2}\right\}$ is $(\pm \varepsilon, \pm 1)$.

An example: $S O(4)$

Initial vector: $y_{0}=(R, 0,0,0)$,
$V(g)=S O(4)$:

$$
\begin{aligned}
\binom{y}{1} & =\left(\begin{array}{cc}
O_{i k} & 0 \\
0 & 1
\end{array}\right)\binom{y_{0}}{1} \\
y^{1} & =R \cos \theta \\
y^{2} & =R \sin \theta \cos \phi \\
y^{3} & =R \sin \theta \sin \phi \cos \chi \\
y^{3} & =R \sin \theta \sin \phi \sin \chi
\end{aligned}
$$

The interval: $d s^{2}=$
$R^{2}\left(d \chi^{2}+\sin ^{2} \chi\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right)\right)$

An example: $S O(4)$

Initial vector: $y_{0}=(R, 0,0,0)$,
$V(g)=S O(4)$:

$$
\begin{aligned}
\binom{y}{1} & =\left(\begin{array}{cc}
O_{i k} & 0 \\
0 & 1
\end{array}\right)\binom{y_{0}}{1} \\
y^{1} & =R \cos \theta \\
y^{2} & =R \sin \theta \cos \phi \\
y^{3} & =R \sin \theta \sin \phi \cos \chi \\
y^{3} & =R \sin \theta \sin \phi \sin \chi
\end{aligned}
$$

The interval: $d s^{2}=$ $R^{2}\left(d \chi^{2}+\sin ^{2} \chi\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right)\right)$

There is another way:

$$
\begin{aligned}
y^{1} & =R \cos \chi \cos \theta, \\
y^{2} & =R \cos \chi \sin \theta, \\
y^{3} & =R \sin \chi \cos \phi, \\
y^{3} & =R \sin \chi \sin \phi
\end{aligned}
$$

(Hopf coordinates).
The interval: $d s^{2}=$ $\left.R^{2}\left(d \chi^{2}+\cos ^{2} \chi d \theta^{2}+\sin ^{2} \chi d \phi^{2}\right)\right)$ N. Vilenkin, Polyspherical and orispherical functions (1965)

Another example: Godel universe (2004.05882)

$$
\begin{equation*}
d s^{2}=d t^{2}+2 \mu \sinh ^{2} \chi d t d \phi-d \chi^{2}-\left(\sinh ^{2} \chi-\left(1-\mu^{2}\right) \sinh ^{4} \chi\right) d \phi^{2}-d z^{2} \tag{3}
\end{equation*}
$$

The symmetry is $S O(2,1) \otimes S O(2) \otimes \mathbb{R}$.

Another example: Godel universe (2004.05882)

$d s^{2}=d t^{2}+2 \mu \sinh ^{2} \chi d t d \phi-d \chi^{2}-\left(\sinh ^{2} \chi-\left(1-\mu^{2}\right) \sinh ^{4} \chi\right) d \phi^{2}-d z^{2}$

The symmetry is $S O(2,1) \otimes S O(2) \otimes \mathbb{R}$. Ansatz:

$$
\begin{array}{r}
y^{0}=\sqrt{\varepsilon} \frac{A(\chi)}{\alpha} \sin (\sqrt{\varepsilon} \alpha t), y^{2}=B(\chi) \sin (m \phi-\beta t), \\
y^{1}=\xi \frac{A(\chi)}{\alpha} \cos (\sqrt{\varepsilon} \alpha t), y^{3}=B(\chi) \cos (m \phi-\beta t), \tag{4}\\
y^{4}=\frac{C(\chi)}{n} \sin (n \phi), y^{5}=\frac{C(\chi)}{n} \cos (n \phi), y^{6}=f(\chi), y^{7}=z .
\end{array}
$$

Another example: Godel universe (2004.05882)

$d s^{2}=d t^{2}+2 \mu \sinh ^{2} \chi d t d \phi-d \chi^{2}-\left(\sinh ^{2} \chi-\left(1-\mu^{2}\right) \sinh ^{4} \chi\right) d \phi^{2}-d z^{2}$

The symmetry is $S O(2,1) \otimes S O(2) \otimes \mathbb{R}$. Ansatz:

$$
\begin{array}{r}
y^{0}=\sqrt{\varepsilon} \frac{A(\chi)}{\alpha} \sin (\sqrt{\varepsilon} \alpha t), y^{2}=B(\chi) \sin (m \phi-\beta t), \\
y^{1}=\xi \frac{A(\chi)}{\alpha} \cos (\sqrt{\varepsilon} \alpha t), y^{3}=B(\chi) \cos (m \phi-\beta t), \tag{4}\\
y^{4}=\frac{C(\chi)}{n} \sin (n \phi), y^{5}=\frac{C(\chi)}{n} \cos (n \phi), y^{6}=f(\chi), y^{7}=z .
\end{array}
$$

Solution:

$$
\begin{array}{ll}
A(\chi)=\cosh \chi, & B(\chi)=\mu \sinh \chi, \\
C(\chi)=\frac{\sqrt{\left|\mu^{2}-1\right|}}{2} \sinh 2 \chi, & f(\chi)=\frac{\sqrt{\left|\mu^{2}-1\right|}}{2} \cosh 2 \chi \tag{5}
\end{array}
$$

Rotating BTZ black hole (2107.00752)

$$
\begin{equation*}
d s^{2}=\left(-M+\frac{r^{2}}{l^{2}}\right) d v^{2}+J d v d \theta-\frac{4 r^{2}}{J^{2}} d r^{2}-\frac{4 r^{2}}{J} d r d \theta-r^{2} d \theta^{2} . \tag{6}
\end{equation*}
$$

Rotating BTZ black hole (2107.00752)

$$
\begin{align*}
& d s^{2}=\left(-M+\frac{r^{2}}{l^{2}}\right) d v^{2}+J d v d \theta-\frac{4 r^{2}}{J^{2}} d r^{2}-\frac{4 r^{2}}{J} d r d \theta-r^{2} d \theta^{2} . \tag{6}\\
& y^{1}=\frac{J}{2 \alpha} \sin \left(\varphi+\frac{2}{J}\left(\alpha^{2} v-r\right)\right), y^{2}=\frac{J}{2 \alpha} \cos \left(\varphi+\frac{2}{J}\left(\alpha^{2} v-r\right)\right), \\
& y^{3}=\sqrt{r^{2}+\frac{J^{2}}{4 \alpha^{2}}} \sin \left(\varphi-\frac{1}{\alpha} \arctan \left(\frac{2 \alpha r}{J}\right)\right), \\
& y^{4}=\sqrt{r^{2}+\frac{J^{2}}{4 \alpha^{2}}} \cos \left(\varphi-\frac{1}{\alpha} \arctan \left(\frac{2 \alpha r}{J}\right)\right), \\
& y^{5}=v \sqrt{\alpha^{2}+M+\frac{J^{2}}{4 \alpha^{2} l^{2}}}, \tag{7}\\
& y^{6}=\frac{1}{\alpha} \sqrt{\left(\alpha^{2}-1\right)\left(r^{2}+\frac{J^{2}}{4 \alpha^{2}}\right)} \sin \left(\frac{\alpha v}{l \sqrt{\alpha^{2}-1}}\right), \\
& y^{7}=\frac{1}{\alpha} \sqrt{\left(\alpha^{2}-1\right)\left(r^{2}+\frac{J^{2}}{4 \alpha^{2}}\right)} \cos \left(\frac{\alpha v}{l \sqrt{\alpha^{2}-1}}\right),
\end{align*}
$$

Conclusion

- Surfaces are described by embedding function,

Conclusion

- Surfaces are described by embedding function,
- Their form can be found from the induced metric condition,

Conclusion

- Surfaces are described by embedding function,
- Their form can be found from the induced metric condition,
- The best way to solve the corresponding PDE system is to separate the variables,

Conclusion

- Surfaces are described by embedding function,
- Their form can be found from the induced metric condition,
- The best way to solve the corresponding PDE system is to separate the variables,
- It can be done using S. A. Paston's method (through finding the representation of a full symmetry group of the metric) or its generalization (the Abelian subgroups of this group).

