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Isometric embedding

Friedman theorem (1961)
An arbitraryD-dimensional
pseudo-Riemannian spacetime can
be locally isometrically embedded in
a N-dimensional
pseudo-Riemannian space of
suitable signature,
N ≥ D(D + 1)/2.

Embedding class: p = N −D.

Main object:
embedding function ya(xµ).

Induced metric:
gµν = ∂µy

a∂νy
bηab,

Example: sphere embedding
y1 = x = R cos θ,

y2 = y = R sin θ cosϕ,

y3 = z = R sin θ sinϕ.

https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.37.201.2
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Method of exact embeddings construction

Induced metric condition:

gµν = ∂µy
a∂νy

bηab,

Features:
System of nonlinear PDEs,
No general methods of solution,

Dramatically simplifies, if the variables can be separated,
Gives an explicit form of a surface.

Useful when the metric has relatively simple form.
How to separate the variables?
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What is a symmetric surface?

A surface is G-symmetric,
if it transforms into itself under G̃ ∼ G—
a subgroup of the group of motion P of the ambient spacetime.

There is a homomorphism V : G → P.
For the ambient Minkowski spacetime G̃
is a subgroup of Poincare group SO(m,n) ▷ Tm,n
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How to construct a symmetric surface?

Choose the dimension of the
ambient spacetime (D + p is
perfect),

List all representations of G̃
which fit into it,
Write down the generatrix:

initial vector
(
y0
1

)
Transform it using the
matrices of G̃ to obtain the
embedding function:(

y
1

)
=

(
Λ a
0 1

)(
y0
1

)
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Original method was invented by S. A. Paston (arXiv:1202.1204).

Generalization (A. S., M. M., S. P.): 2107.00752.
Main idea: use not the whole symmetry group G,
but rather its abelian subgroups.
Abelian transformation w.r.t. parameter t can be represented by
(pseudo)-rotation in an ambient spacetime:

y1 =
f(r)

α

√
ε sin(

√
ε(αt+ w(r))), (1)

y2 =
f(r)

α
cos(

√
ε(αt+ w(r))) (2)

where ε = ±1 and the signature of {y1, y2} is (±ε,±1).
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An example: SO(4)

Initial vector: y0 = (R, 0, 0, 0),
V (g) = SO(4):(

y
1

)
=

(
Oik 0
0 1

)(
y0
1

)

y1 = R cos θ,

y2 = R sin θ cosϕ,

y3 = R sin θ sinϕ cosχ,

y3 = R sin θ sinϕ sinχ.

The interval: ds2 =
R2(dχ2 + sin2 χ(dθ2 + sin2 θdϕ2))

There is another way:

y1 = R cosχ cos θ,

y2 = R cosχ sin θ,

y3 = R sinχ cosϕ,

y3 = R sinχ sinϕ

(Hopf coordinates).
The interval: ds2 =
R2(dχ2 + cos2 χdθ2 + sin2 χdϕ2))
N. Vilenkin, Polyspherical and
orispherical functions (1965)

http://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=sm&paperid=4325&option_lang=rus
http://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=sm&paperid=4325&option_lang=rus
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Another example: Godel universe (2004.05882)

ds2 = dt2 + 2µ sinh2 χdtdϕ− dχ2 − (sinh2 χ− (1− µ2) sinh4 χ)dϕ2 − dz2

(3)

The symmetry is SO(2, 1)⊗ SO(2)⊗ R.

Ansatz:

y0 =
√
ε
A(χ)

α
sin

(√
εαt

)
, y2 = B(χ) sin(mϕ− βt), ,

y1 = ξ
A(χ)

α
cos

(√
εαt

)
, y3 = B(χ) cos(mϕ− βt),

y4 =
C(χ)

n
sin(nϕ), y5 =

C(χ)

n
cos(nϕ), y6 = f(χ), y7 = z.

(4)

Solution:

A(χ) = coshχ, B(χ) = µ sinhχ,

C(χ) =

√
|µ2 − 1|
2

sinh 2χ, f(χ) =

√
|µ2 − 1|
2

cosh 2χ,
(5)
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Rotating BTZ black hole (2107.00752)

ds2 =

(
−M +

r2

l2

)
dv2 + Jdvdθ − 4r2

J2
dr2 − 4r2

J
drdθ − r2dθ2. (6)

y1 =
J

2α
sin

(
φ+

2

J
(α2v − r)

)
, y2 =

J

2α
cos

(
φ+

2

J
(α2v − r)

)
,

y3 =

√
r2 +

J2

4α2
sin

(
φ− 1

α
arctan

(
2αr

J

))
,

y4 =

√
r2 +

J2

4α2
cos

(
φ− 1

α
arctan

(
2αr

J

))
,

y5 = v

√
α2 +M +

J2

4α2l2
,

y6 =
1

α

√
(α2 − 1)

(
r2 +

J2

4α2

)
sin

(
αv

l
√
α2 − 1

)
,

y7 =
1

α

√
(α2 − 1)

(
r2 +

J2

4α2

)
cos

(
αv

l
√
α2 − 1

)
,

(7)
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Conclusion

Surfaces are described by embedding function,

Their form can be found from the induced metric condition,
The best way to solve the corresponding PDE system is to
separate the variables,
It can be done using S. A. Paston’s method (through finding the
representation of a full symmetry group of the metric) or its
generalization (the Abelian subgroups of this group).
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