Why does expectation value of stress energy
tensor blow up near the event horizons?
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Introduction



What we want to calculate and why?

Black hole solution of the Einstein equations:
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Horizon at r = rs



What we want to calculate and why?

But, in fact, quantum average of the stress-energy tensor
of a matter field should be taken into account:
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From the one hand G is small constant, and we expect
perturbated solution has the form of:

g;w - Q?w o Gh;w
From the other hand:
Joo(r=1rs)=0

So, metric is sensitive to the perturbations — Hawking
radiation ?



What we want to calculate and why?
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What we want to calculate and why?

Calculating of the quantum average of the stress-energy
tensor in the curved backround is a hard technical
problem.

The key goal of the talk is to discuss properties of the
quantum average of the stress-energy tensor in the
spaces with horizons:



What we want to calculate and why?

The key goal of the talk is to discuss properties of the
guantum average of the stress-energy tensor in the
spaces with horizons:

<T/w> =7

We fix the background metric
and find a method of calculation such averages.



Setup



Difficulties

- Regularization?
- State (density matrix?
- Coordinate dependence?



Framework

Action of the matter field:
S = % /d4X V=g (@Lgp@“gp — m2992>,
SET expectation value from the Wightman function as:
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which is defined as follows:
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2D
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No Einstein equation, but simple calculations! The
tortoise coordinate
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near the horizon (r* — —oo) the metric looks like the
Rindler's one:

ds?, ~ e <dt2 — clr*2>



O — O+ Moo p = 0 (2)
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Near the horizon:
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In the lightcone coordinates V=t +r*, U=t — r* the metric (??)
takes the form
=g
ds? = C(u,ydudv, c(u,v)= 27 )
14+ W(ew )

where W(r*) is the Lambert function. Near the horizon

_ _ dw 1 iw(VF—U— . (Vv —V—
WU, 7 U~ [ (e gt

4 ewUt-UT) 4 eiw(U*V‘)Ziéw)

R
T u%e v 7o v
2 ot 487rg”

where
1 s s T
) :——4WWUW =
w v RETYZ 1232 RETYZ
™ i i

_ 12920172 4. _
Ow = — C/3V / 1252__125,%,+1252

Oy =0w =0



4D
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Equation of motion:

[ — 8+ v,(r)] L(r*) = wPL(r*)
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Wi(x,

X) =
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We define regularization as follows:

(: 7—/“/ Dp = (: ?HV D — (: ?_HV D+ tw Dy <7—MV>5 - <7\—MV>ﬂH

finite term(no regularization)

Where By is inverse Hawking radiation. From point splitting or
effective actions:

<: ?MV :>5H ~ Guv
We consider

M=12 =  By=2r
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Divergent at the horizon! And mass independent!
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Trace is mass independent



Other spaces:

ds? —e%e (mf _ d§2> _d2,

ds? = (1

, dr 2( 2 2,
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The similar results!

flry=1—Hr?
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Peculiarities of Wightman functions near
the horizons




+o0

> (204 1)Py( cosb) [|Rw71(r*)\2 + |Lw,z(r*)|2} &
=0

8 e\ L,
%a—fsin(2wlog7), if ef <6«
Then the approximate form is as follows:
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Note that in the limit in question, the geodesic distance:

L~ ry/2(1—cosf) ~ g
= % Finally, for the Wightman function, we obtain:
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To obtain Hamiltonian we use the field operator:
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Here h.c. is a Hermitian conjugated term. Straightforward
calculation gives the following Hamiltonian in the
Schwarzschild space time:

22/ duow (B, b, + ! 8.)
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Joo(r=1rs) = 0.

singularity (r = 0)

t =const

time-like trajectories became light-like on the horizon!
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My mail:
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Thank you for your attention!
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