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Motivation for Hotava gravity

Einstein GR

M2 M2 iy
SgH = TP /dtdda: v—gR = TP /dtdda: (hiORY +..0) (1)
Higher derivative gravity (Stelle 1977)

/(R+ R*+ R, R") = /(hijmhij + hi; PR + ) (2)

The theory is renormalizable and asymptotically free. However the theory is
not unitary due to presence of ghosts.
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Hotava gravity (2009)

The key is the anisotropic scaling of time and space coordinates,
t—b%t, z'— bl i1=1,...,d
The theory contains only second time derivatives
/ dt dd(E (h”h” — hij(—A)Zhij + .. )
o b—(z+d)

And field scales as
hij — b(diz)/zhij

Critical theory
z=d

Foliation preserving diffeomorphisms

tst'(t), o' 2"t x)
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Metric decomposition

The metric in the action of HG is expanded into the lapse N, the shift N* and
the spatial metric 7;; like in the Arnowitt—Deser—Misner (ADM)
decomposition,

ds? = N?dt? — v;;(da’ + N'dt)(da? + Nidt). (8)
Fields are assigned the following dimensions under the anisotropic scaling:
[N]=lyw]=0, [N]=d-1. 9)

The Lagrangian is then built out of all local FDiff-invariant operators that can
be constructed from these fields and have dimension less or equal 2d.
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Projectable version

A Barvinsky, D.Blas, M.Herrero-Valea, S.Sibiryakov, C.Steinwachs (2016)

We consider projectable version of Horava gravity. The lapse IV is restricted to
be a function of time only, N = N(t)

1 ..
S = 56 /dtddxﬁ(Kin” —AK?-V), (10)
where
1.
Ky = 2 G~ Vi, — 9,0 o

The potential part V in d = 3 reads,
V =2A — R+ puy R? + js R;; RY
+ 1R + 13 RR;jRY + vsRERLRY + 14V RV'R + vsV; R; V' R7*

This expression includes all relevant and marginal terms. It contains 9
couplings A, n, 1, o and vy, a =1,...,5.
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Dispersion relations

The spectrum of perturbations contains a transverse-traceless graviton and a
scalar mode. Both modes have positive kinetic terms when G is positive and

A<1/3 or A>1. (13)

Their dispersion relations around a flat background are

wiy = nk* + pokt +vskS (14a)
11—\
w? = T (= nk® + (81 + 3p2)k*) + v kS (14b)

where k is the spatial momentum and we have defined

(1 — \)(8vy + 3vs)
1—3)\ '

Vs

(15)

These dispersion relations are problematic at low energies where they are
dominated by the k2-terms.

S DG



|
The choice of the background

A.Barvinsky, A.K., S.Sibiryakov (2022)

We focus on the part of the action consisting of the marginal operators with
respect to the anisotropic scaling

1 . g o
S=3a /dT &Pz /7 (K K9 = AK? + 11 R® + vaRRi;RY + v3 R, R} R}

(16)
+v4ViRV'R + v5V,; R,V R7%).
And choose static background metric and zero background shift
Yij (T, %) = gi5(x) + hij (7,%), N'(r,x) = 0+ n'(,x), (17)
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Background covariant gauge-fixing

The gauge-fixing action is chosen as

g

ng:@

dr d*z \/g F'O;; F7, (18)

which is the quadratic form in the gauge-condition functions F* with the
kernel O

R
F'=n'+ %Oijl(vkhjk — AVh), (19)
O = (6707 +£V'AW) . (20)

The gauge-fixing matrix O;; is the nonlocal Green’s function of the covariant
fourth-order differential operator.
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Shift part of the action

From the sum of the kinetic action and the gauge-breaking terms we obtain
the quadratic in n’ part of the gauge-fixed action,

1 . 1 1 .
S, = —/dega: gn' —0(91383 +AV;V; — -V,;V; — —g;;A| n/
2G 2 2
(21)
= %/deBx gn'O;; {—5{683 + B (V)| n",
where the differential operator B’ ;(V) in spatial derivatives reads
i L1 e i € Gingk § i ‘
B (V) =—-=0;A" — —A*V;V' — ==V'AV"V,;V;, — ==V'AV,A
J 20 7 20 20 20 (22)
A ; A
+ ;AQVZVJ- + fvm?vj.
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Ghost part of the action

The action of the ghost fields ¢! and ¢; reads
1 3 - i
Seh = ——= [ drd’z\/g¢;(sF"), (23)

where sF is the BRST transform of the gauge conditions.

Shij = Vicj + VjCi + hikv]‘Ck + hjkvick + Ckvkhij, C; = gijCj, (248.)
sn' = ¢ —nIV,c +dV;n', (24b)

After the substitution of (24) into (23), the ghost action in the quadratic order
of all quantum fields takes the following form

1 . B ; i ,
Seh = el /de‘sx g (75]»32 +B',(V)) ¢, (25)
where the operator B’ ; exactly coincides with that of shift part.
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Metric part of the action

The kinetic part for the metric perturbations has the form

V9,4 2B gkl Lo ik i A ik
— 2= h"Gup0;h G" gl —g¥ 26
°G =3gl%e" + g'g’") - FEACAR (26)
where h? = hij. The part of the quadratic action with space derivatives of the
metric is too lengthy to be written explicitly. Schematically, it has the form,

Lpot,hh + Lgt, hi = ;g hADaph®, (27)

where D4 is a purely 3-dimensional differential operator of 6th order. In flat
background it reduces to terms with exactly 6 derivatives,

WADah® = (22— LV n*a20.0,07 4+ (200 + 2 + 20ED ) A2, 004
2 40 2 20
Vs § ij Kl vs  A2(1+€) 3 Vs, ij A3
<V4+ 5 + 4a>h 0;0;0,0,h"" + ( vi— 1o hA°h 1 h" AR
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Total one-loop action

The one-loop effective action is given by the Gaussian path integral
exp (—Fl_l‘mp) = /Det O;; / [dhA dn® dc déj} exp ( - 5(2)[h‘4,ni, el ),

where the quadratic part of the full action consists of three contributions —
metric, shift vector and ghost ones,

- 1 1

SA[r, 0t ¢l ] = e /d7d3x\/§[2h‘4 (~Gap02 + Dap) h”
(28)
1 X ; ) X )

+ 5on Oy (=0507 + BY) 0 + ¢ (=0;07 +B;) |
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Total one-loop action

The result of the integration
Det (—6507 + B')
V/Det (=502 + Dag),/Det [Ou (—6+02 + BY,)]

exp (71117100;)) _ \/m

The operator O;; cancels out, while the shift and ghost parts reduce to the
contribution of a single functional determinant.

l—sl—loop _ §Trln(_6g672_ + D’L}B) — §Trln (—5;83 + ]sz) ) (29)

where
D% = (G™H)*“Des. (30)
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3D reduction

We begin by using the proper-time representation for the trace of the
logarithm of an operator

Tr In(—02 +F) = —/ ﬁﬂe—s(—ff”), (31)
O S

where F is either ID)AB or B? ;- Thus, we obtain the expression for the metric
tensor part of the effective action,

0o
Flfloop _ 1 / @ Trefs(ftigafﬂrﬂ))%)
0

metric 2 s

=— % /dT dx / % tre (089D B) (7 — ) §(x — )

T=7',%x=x"'
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3D reduction

For a static background it can be transformed by the following chain of
relations

ridir == b [arde [ wecoiteod [ oy )
m
= — = /d7d3 / dS diw 7SWQtI'675DAB(5(X _ X,)

/de3 /T/Qtre_SDBd(x—x)

= 1/2 /degwtr D46(x — x')

T—7/, x=x'

x=x'

’

X=X

x=x'

= / dr T@,M . (32)

Introducing the notation (@Df}B = /D% and Qg’ ;= IB%l the full one-loop

action can be expressed as
1 )
Fl_IOOP = 5 /dT |:TI‘3 QDAB — Trs Q]sz} . (33)

S TS



The strategy for evaluation

The operators F = (D, B) can be brought into the form:

F= ZR(a) Z k1. Vog_a(—=A)*F R(a):O(lla). (34)

6>2k>a

Their square roots are nonlocal pseudo-differential operators given by

o) K.
S 1

\/F = ZR(D’) Z Oémkvl...VQk_a(_A)W ; (35)

a=0 k>a/2
The UV divergent part of I"'~1°°P follows from the calculation of UFTs
1
3
/d Z‘R(a) (X)Vl...VQk_amé(x,x') L (36)

Since the divergences of HG have at maximum the dimensionality a = 6, only

finite number of such traces will be needed. The problem is split in two steps

— calculation of the operator square root and the evaluation of UFTs.
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Square root of principal symbol

The principal symbol of the vector operator B
i of L 1204261 =)) .
B';(p) =p (206]+ 55 D'D;

can be easily written in terms of the transverse and longitudinal projectors,

(37)

6
i i 1-0A+ i
B(p) = Lpv 04 LEAUED o, (39)
where _ _ _ _ _
P =5 —ppy,  PYE =5l (39)

Then the square root reads

Q9" (V) = =8 (-A)7 4 ( vor b = *0) VI, (-8) (40)

An example of Q(ﬂg) in one of the gauges

1
QY =vs [(5@55; + 6167 + gijg’”) (-2)*? +

us — 1 Us — 1

5 gijvkvl(—A)1/2

+

s 1 5 1 N
- 59" VaV(=0) 2 ¢ %VMVW(‘A) 1/2] '
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Perturbative scheme

Square root contains all powers of curvature
VF =Q® +Q® +Q® + QW +Q® +Q© +.... (41)
By denoting all curvature corrections in VF as X,
VF =Q¥ +X (42)
one obtains the equation for this correction term
QUX+XQ® =F—- (QV)*-x%, F-(Q)* x R. (43)

This nonlinear equation can be solved by iterations because its right hand side
is at least linear in curvature.
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Universal functional traces

I.Jack and H.Osborn (1984), A.Barvinsky and G.Vilkovisky (1985)

1

_ 1 ) * N—-1/2 sA } div
Vll...vzpmé(m,y) y:I— mv”...vlp ) ds s ($ 5(I,y) y:z.
Heat-kernel (Schwinger-DeWitt) expansion
. DY (2 _eGw)
e 8(x,y) = (871'7( - Zs an(z,y).
Example of tensor UFTs
1 1 1
m 1/25 kl le — kl - pmn - p2 A
(8028, M s =~ i (SR R+ SR+ AR).
. . div
/dgxJIJVkV’(fA)l/Q(Sijkl(x,y)
y=x
In L2 753 22 1 61
- fle RIRF + " Ri;RIR— "R~ —RAR— —_R;; AR”)
1672 / TVa ( * 120" 105 84 560
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Beta functions

In the last step we obtain the divergent part of the one-loop effective action

e | Y — 2 / drd*z /g (Co, R® + Cuy RRi;R” + C,, Ry RLRY )
+ 0y, ViRV'R+ C,; Vi Rj V' R*).

The coefficients C,,,, which are functions of the couplings A, vy, ..., vs,
represent the key result of the calculation.
The UV divergent factor In L? is related to the integral over the proper-time

parameter,
A2
lnLQZ/dSsjzln< ;j) . (45)

We are now ready to compute the S-functions of the couplings v,

Va Vg 2 — dVa, ren BG
(2G)ren = st +C, L > B, = — GO, +v.2C . (46)
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Essential couplings

Background effective action I'eg depends on the choice of gauge fixing
Teg— e + E.A, (47)

where A is a linear combination of equations of motion.
The UV behavior of the theory is parameterized by seven couplings G, A, v,
a=1,...,5. The essential couplings can be chosen as follows,
G v
G=—— A ug=2 =% a=123 (48)
Vs Vs Vs

The one-loop B-function of A depends only on the first three of these couplings
and reads,

27(1 — A)? + 3ug(11 — 3A)(1 — A) — 2u2(1 — 3))2

Pr=6 12072(1 — ) (1 + us)us

(49)

The gauge-dependent S-function of G (not G) was also computed.
A.Barvinsky, M.Herrero-Valea, S.Sibiryakov (2019)
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Beta functions (main result)

Essential couplings

G _ (1 —)\)(SV4+3V5) o ﬁ -
g T A, us—\/ A, U=y o=b23 (50)
g2
P9 = S6R80m2(1 — N2(1 — BNP(L T ws)Pud Z”S w1, 02, 0], (512)
B =A g E uy )\ V1, V2 ’Ug] (51b)
x *26880m2(1 — A)3(1 — 3X)3(1 + us)3ud s .

where the prefactor coefficients A, = (A,, Avl,Av2, Ay,) equal

Au, = u5(1 - /\)7 A’Ul =1, sz = Avs =2.

(52)
Example of polynomial

Py = —2(1 — 2)®[241920003 (1 — X)? + 8v2 (4264517 — 86482 + 43837)

+ v3 (58698 — 106947\ + 482497%) + 4032v1 (462v2(1 — A)? + 201v3(1 — \)?

+ 3027 — 44X — 10) + 8v2(62522% — 9188\ — 1468) + 8v2v3(343352% — 71196
+ 36861) + v3(20556A% — 30792\ — 3696) + 453312 — 3881\ + 1448]
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Fixed points of RG flow

Br/G =0, (53)
Bx/G =0, X = Us, V1, V2, U3 .

A Us \ v1 2 [ wvs [ Be/G7 | AFT?]
0.1787 60.57 -928.4 -6.206 -1.711 -0.1416 yes
0.2773 390.6 -19.88 -12.45 2.341 -0.2180 yes
0.3288 54533 3.798 x10% -48.66 4.736 -0.8484 yes
0.3289 57317 -4.125x10° -49.17 4.734 -0.8784 yes

0.333332 | 3.528x10™ | -6.595 x10%® | -1.950 x10% | 4.667 | -3.989x10° | yes
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A — 0o limit

A.Gumrukcuoglu and S.Mukohyama, Rev. D 83 (2011) 124033

,Bx/g’ =0, X = Usg, V1, V2, V3 .
A=o00
’ Us V1 Vo V3 ‘ 5g/g2 ‘ AF? ‘
0.01950 0.4994 -2.498 2.999 -0.2004 yes
0.04180 | -0.01237 | -0.4204 1.321 -1.144 yes
0.05530 | -0.2266 0.4136 | 0.7177 -1.079 yes
12.28 -215.1 -6.007 -2.210 -0.1267 yes
21.60 -17.22 -11.43 1.855 -0.1936 yes
440.4 -13566 -2.467 2.967 0.05822 no
571.9 -9.401 13.50 -18.25 | -0.07454 yes
950.6 -61.35 11.86 3.064 0.4237 no

(54)
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Conclusions

@ Beta functions for essential coupling in (3+1)-dimensional Hotava gravity
were obtained.

@ The results underwent a number of very powerful checks.

o Fixed points of RG flow were found. There are candidates for AF points
of the theory.
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Thank you!
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