VII International Conference "Models in Quantum Field Theory" (MQFT-2022)

Contribution ID: 51

Type: Session Talk

Maximal Masses of White Dwarfs for Polytropes in Modified Gravity

We examine the Chandrasekhar limit for white dwarfs in f(R)gravity, with a simple polytropic equation of state describing stellar matter. We use the most popular f(R) gravity model, namely the $f(R) = R + \alpha R^2$ gravity, and calculate the parameters of the stellar configurations with polytropic equation of state of the form $p = K \rho^{1+1/n}$ for various values of the parameter n. In order to simplify our analysis we use the equivalent Einstein frame form of R^2 -gravity which is basically a scalar-tensor theory with well-known potential for the scalar field. In this description one can use simple approximations for the scalar field ϕ leaving only the potential term for it. Our analysis indicates that for the non-relativistic case with $n=3/2,\,\mathrm{discrepancies}$ between the $R^2\text{-}\mathrm{gravity}$ and General Relativity can appear only when the parameter α of the \mathbb{R}^2 term, takes values close to maximal limit derived from the binary pulsar data namely $\alpha_{max} = 5 \times 10^{15} \text{ cm}^2$. Thus, the study of low-mass white dwarfs can hardly give restrictions on the parameter α . For relativistic polytropes with n = 3 we found that Chandrasekhar limit can in principle change for smaller α values. The main conclusion from our calculations is the existence of white dwarfs with large masses $\sim 1.33 M_{\odot}$, which can impose more strict limits on the parameter α for the R^2 gravity model. Specifically, our estimations on the parameter α of the R^2 model is $\alpha \sim 10^{13}$ cm².

Primary author: ASTASHENOK, Artyom (Immanuel Kant Baltic Federal University)Presenter: ASTASHENOK, Artyom (Immanuel Kant Baltic Federal University)Session Classification: Section D

Track Classification: Section D: Gravitation and cosmology