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It is known that, similarly to the space-time of Minkowski, the space-time
of constant non-zero curvature has the maximum symmetry.
Such spaces are the de Sitter and Anti-de Sitter spaces, respectively. For an
Anti-de Sitter (but not de Sitter) metric in Beltrami coordinates, there is a
limit c →∞ leading to an R-space metric.
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Possible Kinematics
H.Bacry, J.-M.Lévy-Leblon, J.Math.Phys., 9, 1605 (1968)

[Ji , Jj ] = εijkJk ;

[Ji ,Kj ] = εijkKk ; [Ji ,Pj ] = εijkPk ; [Ji ,H] = 0;

[Pi ,Kj ] = ρδijH;

[H,Pi ] = αKi ; [H,Ki ] = λPi ;

[Pi ,Pj ] = βεijkJk , [Ki ,Kj ] = µεijkJk .
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[Ji , Jj ] = εijkJk ;

[Ji ,Kj ] = εijkKk ; [Ji ,Pj ] = εijkPk ; [Ji ,H] = 0;

[Pi ,Kj ] = ρδijH;

[H,Pi ] = αKi ; [H,Ki ] = λPi ;

[Pi ,Pj ] = βεijkJk , [Ki ,Kj ] = µεijkJk .

ρ 6= 0; α = ρβ; λ = −ρµ;
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[Pi ,Kj ] = δijH;

de Sitter

[H,Pi ] = +
1

R2
Ki ; [H,Ki ] =

1

c2
Pi ;

[Pi ,Pj ] = +
1

R2
εijkJk , [Ki ,Kj ] = − 1

c2
εijkJk .

Anti–de Sitter

[H,Pi ] = − 1

R2
Ki ; [H,Ki ] =

1

c2
Pi ;

[Pi ,Pj ] = − 1

R2
εijkJk , [Ki ,Kj ] = − 1

c2
εijkJk .
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The linear element of the metric AdS is induced on the surface of the
hyperboloid

z2−1 + z20 − ~z
2 = R2.

in the ambient five-dimensional space with a metric

ds2 = dz2−1 + dz20 − d~z 2.

Let us set z0 = cτ and write the metric as

ds2 = c2dτ2 − d~z 2 +
(c2τdτ − ~zd~z)2

R2 + c2τ2 − ~z 2

In the limit cτ � R, we get

ds2 = − 1

τ2
(R2dτ2 + (~zdτ − τd~z)2)

The transition to Beltrami coordinates {t, ~r}

ct = R
cτ

z−1
, ~r = R

~z

z−1

does not commute with the limit cτ � R.
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The linear element of the AdSB metric is:

ds2 =
ηµνdx

µdxν

h2
− (ηµνx

µdxν)2

R2h4
= gµνdx

µdxν ,

The linear element of the AdSB metric is: where
ηµν = diag{+1,−1,−1,−1}, indices µ, ν take the values 0,1,2,3, the
summation is carried out over repeated indices, and the metric tensor

gµν =
1

h2

(
ηµν −

ηµβx
βηναx

α

R2h2

)
, где h2 = 1 +

ηµνx
µxν

R2
.

Inverse tensor:

gµν = h2
(
ηµν +

xµxν

R2

)
.

Determinant of the metric tensor g = −h−10.
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Let us write an expression for the linear element of the metric AdSB in the
domain ct � R. To do this, we represent the time and space components
in an explicit form:

ds2 = R2 c2dt2 − d~r 2

R2 + c2t2 − ~r 2
− R2 (c2tdt − rdr)2

(R2 + c2t2 − ~r 2)2

and expand in a series in the small parameter R2/(ct)2

ds2 =
R2

c2t2

{
R2

t2
dt2 −

(
dr − r

t
dt
)2
− r2dΩ2 + O(R2/(ct)2)

}
Consider this expression in a small neighborhood of some time
t = T + τ, τ � T and introduce the notation R/T = c0:

ds2 =
c20
c2

{
c20dt

2 −
(
dr − r

R
c0dt

)2
− r2dΩ2 + O(c20/c

2) + O(τ/T )

}
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Laplace–Beltrami operator � =
1√
−g

∂µ(
√
−ggµν∂ν) представляется в

виде

� =

(
1 +

ηµνx
µxν

R2

)((
ηµν +

xµxν

R2

)
∂µ∂ν +

2

R2
xµ∂µ

)
.

Klein–Fock equation for a scalar function Φ :(
1 +

ηµνx
µxν

R2

)((
ηµν +

xµxν

R2

)
∂µ∂ν +

2

R2
xµ∂µ

)
Φ +

m2c2

~2
Φ = 0.

(1)
In the equation (1), we single out terms with certain powers of c :(

c2t2

R2
+

R2 − r2

R2

)(
1

c2
∂2t −∆ +

xµxν

R2
∂µ∂ν +

2

R2
xµ∂µ

)
Φ+

m2c2

~2
Φ = 0.

(2)
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We will consider the equation (2) in some neighborhood of the point
t = T , such that cT >> R . Multiply this equation by R2/c2 and get:

t2
(
−∆ +

xµxν

R2
∂µ∂ν +

2

R2
xµ∂µ

)
Φ +

m2R2

~2
Φ + O(R2/(cT )2) = 0.

t2
(
−∆ +

t2

R2
∂2t +

r2

R2
∂2r +

2rt

R2
∂t∂r +

2t

R2
∂t +

2r

R2
∂r

)
Φ =

= −m2R2

~2
Φ + O(R2/(cT )2). (3)

The equation (3) can be considered as the “non-relativistic” limit of the
equation (2), discarding O(R2/(cT )2), since formally (3) is obtained from
(2) when c →∞.
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The equation (3) allows variable separation. Indeed, setting
Φ(t, ~r) = F (~r/t)f (t), we get

− t2

F (~r/t)
∆F (~r/t) +

t2

R2f (t)
(t∂t + 1)(t∂t)f (t) +

m2R2

~2
= 0.

The solution to this equation can be represented as a superposition of
“plane” waves:

exp

{
i

t~
(a + ~κ~r)

}
with the condition a2 − ~κ2R2 = m2R4.
For fields localized in space-time interval r � R , |t − T | � T , it is
possible to reduce the expression (3) to the form(

∆− 1

c20
∂2t

)
Φ =

m2c20
~2

Φ + O(r/R) + O(|t − T |/T ) + O(c20/c
2),

coinciding with the Klein–Fock equation in the Minkowski space up to
small order O(c20/c

2), O(r/R), O(|t − T |/T ).
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The Dirac equation in the Anti-de Sitter space in Beltrami coordinates can
be represented as:[

iγaeµa

(
∂µ − i

1

4
ωab
µ σab

)
− mc

~

]
Ψ = 0,

where

σab =
i

2
[γa, γb], {γa, γb} = 2ηab, ηabe

a
µe

b
ν = gµν , eaµe

µ
b = δab,

ωabµ =
1

2
ecµ(γcab − γabc − γbca), γcab = (eµa e

ν
b − eµb e

ν
a )∂νe

c
µ. (4)

Tetrads eaµ and their inverses eµa for the metric (7) are easy to calculate

eaµ =
1

h

(
δaµ −

δaβx
βηµνx

ν

R2h(h + 1)

)
, eµa = h

(
δµa +

ηabδ
b
νx

νxµ

R2(h + 1)

)
. (5)
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Substituting expressions (5) into formulas (4), we obtain

ωab
µ =

xν(δaµδ
b
ν − δaνδbµ)

R2h(1 + h)
,

and the Dirac equation takes the form{
ihγµ

[
∂µ +

ηµνx
νxα∂α

R2(h + 1)
− i

4

xν(δdν δ
b
µ − δdµδbν )

R2h(h + 1)
σbd

]
− mc

~

}
Ψ = 0. (6)

Obviously, the equation (6) in the domain r � R coincides with the Dirac
equation in the Minkowski space. In this regard, the equation (6) is used to
approximate corrections of the order of O(r2/R2) to solutions of the
ordinary Dirac equation.
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We consider this equation in the vicinity of the auxiliary moment of time
t = T , such that cT � R. Multiply the equation (6) by R/cT , expand all
expressions into series with respect to this small parameter and discard
terms of order O(R/cT ). The resulting expression looks like

i

[
t2

TR
γ0∂t +

tr

TR
γ0∂r +

t

T
γ i∂i

]
Ψ− mR

~T
Ψ = 0. (7)

In a small neighborhood of the world point t = T , r = 0 in the equation
(7) one can neglect small quantities of the order of O(r/R), O(|t − T |/T )
and obtain an equation (R/T ≡ c0)

i

[
1

c0
γ0∂t + γ i∂i

]
Ψ− mc0

~
Ψ = 0,

that formally coincides with the Dirac equation in the Minkowski space.
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We use the representation of gamma matrices, in which

γ0 =

(
I 0
0 −I

)
, γi =

(
0 σi

−σi 0

)
,

and the bispinor Ψ can be represented as

Ψ =

(
φ
θ

)
.

The equation (7) for the spinors φ and θ can be represented as

D0φ+ Dθ − mR

~
φ = 0, (8)

D0θ + Dφ+
mR

~
θ = 0, (9)

where the notation

D0 = i
t

R
(t∂t + r∂r ), D = itσi∂i (10)
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It is easy to check that [D0,D] = 0, and the operator D2 − D2
0 coincides

with the Laplace–Beltrami operator on the left side of the equality (10):

t2
(
−∆ +

xµxν

R2
∂µ∂ν +

2

R2
xµ∂µ

)
.

Thus, as a solution to the equations (8), (9), we can take two solutions to
the equation (3) related by the relation (8) or (9).
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The Anti-de Sitter-Beltrami metric is covariant under the following
transformations:

Spatial translations:

x ′ =
x − ρ

1− ρx
R2

, (11)

{t ′, y ′, z ′} =
{t, y , z}

√
1− ρ2

R2

1− ρx
R2

. (12)

Time translation:

t ′ =
t − αR2/c2

1 + αt
, (13)

~r ′ =
~r
√

1− α2R2

c2

1 + αt
. (14)

Lorentz transformations:
x ′ = γ(x − ut),

t ′ = γ(t − u

c2
x),
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In the non-relativistic limit, spatial translations do not change, Lorentz
transformations turn into ordinary Galilean transformations

x ′ = x − ut, (15)

t ′ = t,

and time translations take the form:

t ′ =
t

1 + αt
, (16)

~r ′ =
~r

1 + αt
. (17)

A characteristic feature of this transformation is the invariance of the
hyperplane t = 0.
How did we get the relativistic Klein-Fock and Dirac equations?
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The fact is that time in all the above transformation formulas is measured
not from an arbitrarily chosen initial moment, but from this invariant
hyperplane. To obtain an expression relating the coordinates of two inertial
reference frames whose origins coincide at some time T , it is necessary to
perform the Galilean transformation (15) with the parameter u, then shift
the spatial coordinates (11), (12) with the parameter ρ = uT , while the
time t = T will go to t ′ = T

√
1− u2T 2/R2. Next, we need to make a

transformation (16), (17) with the parameter
α = T−1

(√
1− u2T 2/R2 − 1

)
.
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As a result of these transformations, the point t = T , r = 0 remains
unchanged, and the coordinates of an arbitrary space-time point are
transformed as

t ′ =
t

γ − (γ − 1)t/T + γuxT/R2)
,

x ′ =
γ(x − u(t − T ))

γ − (γ − 1)t/T + γuxT/R2)
,

{y ′, z ′} =
{y , z}

γ − (γ − 1)t/T + γuxT/R2)
,

where γ = 1√
1− u2T2

R2

. And this is nothing but fractional-linear Lorentz-Fock

transformations. Introducing the notation c0 = R/T and passing to limit
R � x , T � |t − T | for a fixed c0, we obtain the usual Lorentz
transformations for the quantities {t − T , x , y , z}.
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The Schrödinger equation can be considered as a non-relativistic analogue
of the wave equation. The group of coordinate transformations considered
above consists of Galilean transformations and fractional linear space-time
translations. In the region r � R , linear-fractional spatial translations
become linear, while transformations

t ′ =
t

1 + αt
,

~r ′ =
~r

1 + αt
,

that have the meaning of reverse-time translations remain unchanged.
The usual free Schrödinger equation

i~∂tΨ = − ~2

2m
∆Ψ (18)

is invariant under time translations.
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Let’s try to modify the equation (18) in such a way that it becomes
covariant with respect to translations of the reverse time:

i~
(

t2

T 2
∂t +

tr

T 2
∂r

)
Ψ = − ~2

2m

t2

T 2
∆Ψ.

This equation has solutions similar to the solutions of the Klein–Fock
equation:

Ψ(t, ~r) = exp

{
i

~t
(a + ~k~r)

}
,

but with another condition:

a =
k2

2m
.
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To describe unstable states, the right side of the equation should include Γ0

– the probability of decay per unit time, measured at the moment T :

i~
(

t2

T 2
∂t +

tr

T 2
∂r

)
Ψ = − ~2

2m

t2

T 2
∆Ψ + i~

Γ0

2
Ψ.

The solution of this equation differs from the original one by the factor
exp(Γ0T

T−t
2t ), which leads to the probability density in the form

P(t) = P(T ) exp

(
Γ0T

T − t

t

)
= P(T ) exp

(
−Γ0

τ

1 + τ/T

)
.

where (τ ≡ t − T )
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Let us finally turn to the Schwarzschild metric in the Anti-de
Sitter-Beltrami space SAdSB.

ds2 =

(
f (r , t)

h20
− r2t2c2

R4h6f (r , t)

)
c2dt2 +2

h20c
2trdtdr

R2h6f (r , t)
− h40dr

2

h6f (r , t)
− r2dΩ2

h2
.

Here
R2h2 = R2 + c2t2 − r2,

R2h20 = R2 + c2t2,

f (r , t) = 1 +
r2

R2h2
− 2MGh

c2r
.
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Passing to the region ct � R and expanding in a series in a small
parameter, we obtain

R2h2 = c2t2(1 + O(R2/(ct)2),

R2h20 = c2t2(1 + O(R2/(ct)2),

f (r , t) = 1− 2Mgt

Rr
, g ≡ G/c

ds2 =
R2

c2t2

{
f (r , t)R2dt2

t2
− (rdt − tdr)2

t2f (r , t)
− r2dΩ2 + O(R2/(ct)2)

}
.

This expression for f → 1 coincides with (8).
all the thermodynamic formulas obtained in the previous report for the
AdSB space coincide in our "nonrelativistic"limit with similar formulas in
the Minkowski space.
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