Models in Quantum Field Theory (MQFT) 2022 Convergent perturbation theory in field models of statistical physics

M. Nalimov¹, A. Ovsiannikov²

 ¹Department of Statistical Physics, St Petersburg University (SPbU)
 ²Department of Theoretical Physics and Astrophysics, Pavol Jozef Šafárik University (UPJŠ)

Oct. 10, 2022

Outline

1 Introduction

- Divergent perturbation theory in QFT. Standard problems
- Asymptotic character of perturbation theory power series
- 2 Convergent perturbation theory
 - When might perturbation theory converge?
 - General remarks about the method

3 Main results

- General requirements for the field model
- Physical Models
- Construction of models with convergent series
- Proof of series convergence
- Diagram technique
- IR and UV problems

Introduction

Divergent series in QFT = infinite single terms + divergence of the total sum.

ndividual infinite diagrams:

- 1. Ultraviolet problem Standard solution: regularization and some renormalization scheme.
- Infrared problem
 Standard solution: renormalization group (RG)

Divergent series in QFT = infinite single terms + divergence of the total sum.

Individual infinite diagrams:

- 1. Ultraviolet problem Standard solution: regularization and some renormalization scheme.
- 2. Infrared problem Standard solution: renormalization group (RG)

Divergent series in QFT = infinite single terms + divergence of the total sum.

Individual infinite diagrams:

- 1. Ultraviolet problem Standard solution: regularization and some renormalization scheme.
- 2. Infrared problem Standard solution: renormalization group (RG)

Divergent series in QFT = infinite single terms + divergence of the total sum.

Individual infinite diagrams:

- 1. Ultraviolet problem Standard solution: regularization and some renormalization scheme.
- 2. Infrared problem Standard solution: renormalization group (RG)

Asymptotic series in QFT:

$$G = \sum_{N} G^{(N)} g^{N}, \quad G^{(N)} \sim N! (-A)^{N} N^{B} C, \quad N \to \infty, \quad A, B, C < \infty.$$

Standard solution: various resummation procedures.

How is perturbation theory constructed in QFT?

Typical object:
$$\int \mathcal{D}[\Phi] \ e^{-S_0 - gS_{\text{int}}} = \int \mathcal{D}[\Phi] e^{-S_0} \sum_{N=0}^{\infty} \frac{(-g)^N}{N!} (S_{\text{int}})^N \Rightarrow \sum_{N=0}^{\infty} \int \mathcal{D}[\Phi] \dots$$

What is the reason for the divergence?

In all realistic field theories we have $S_0 \geqslant 0$ and $|S_{
m int}| \gg |S_0|$ (Dyson's argument).

Asymptotic series in QFT:

$$G = \sum_{N} G^{(N)} g^{N}, \quad G^{(N)} \sim N! (-A)^{N} N^{B} C, \quad N \to \infty, \quad A, B, C < \infty.$$

Standard solution: various resummation procedures.

How is perturbation theory constructed in QFT?

$$\mathsf{Typical object:} \quad \int \mathcal{D}[\Phi] \ e^{-S_0 - gS_{\mathsf{int}}} = \int \mathcal{D}[\Phi] e^{-S_0} \sum_{N=0}^{\infty} \frac{(-g)^N}{N!} (S_{\mathsf{int}})^N \Rightarrow \sum_{N=0}^{\infty} \int \mathcal{D}[\Phi] \dots$$

What is the reason for the divergence?

In all realistic field theories we have $S_0 \ge 0$ and $|S_{int}| \gg |S_0|$ (Dyson's argument).

Asymptotic series in QFT:

$$G = \sum_{N} G^{(N)} g^{N}, \quad G^{(N)} \sim N! (-A)^{N} N^{B} C, \quad N \to \infty, \quad A, B, C < \infty.$$

Standard solution: various resummation procedures.

How is perturbation theory constructed in QFT?

$$\text{Typical object:} \quad \int \mathcal{D}[\Phi] \ e^{-S_0 - gS_{\text{int}}} = \int \mathcal{D}[\Phi] e^{-S_0} \sum_{N=0}^{\infty} \frac{(-g)^N}{N!} (S_{\text{int}})^N \Rightarrow \sum_{N=0}^{\infty} \int \mathcal{D}[\Phi] \dots$$

What is the reason for the divergence?

In all realistic field theories we have $S_0 \ge 0$ and $|S_{int}| \gg |S_0|$ (Dyson's argument).

Asymptotic series in QFT:

$$G = \sum_{N} G^{(N)} g^{N}, \quad G^{(N)} \sim N! (-A)^{N} N^{B} C, \quad N \to \infty, \quad A, B, C < \infty.$$

Standard solution: various resummation procedures.

How is perturbation theory constructed in QFT?

$$\mathsf{Typical object:} \quad \int \mathcal{D}[\Phi] \ e^{-S_0 - gS_{\mathsf{int}}} = \int \mathcal{D}[\Phi] e^{-S_0} \sum_{N=0}^{\infty} \frac{(-g)^N}{N!} (S_{\mathsf{int}})^N \Rightarrow \sum_{N=0}^{\infty} \int \mathcal{D}[\Phi] \dots$$

What is the reason for the divergence?

In all realistic field theories we have $S_0 \ge 0$ and $|S_{int}| \gg |S_0|$ (Dyson's argument).

Convergent perturbation theory

When might perturbation theory converge?

A sufficient condition for the analyticity of the correlator in the vicinity of g=0 is

 $|S_0| \gg |S_{\mathsf{int}}|$ (A. G. Ushveridze, 1982)

General idea of the method

Choose in some way new S $_0$ and S $_{
m int}$ and also a new expansion parameter ζ in such a way that

- 1. Condition (1) is fulfilled,
- 2. New action $S_0 + \zeta S_{int}$ coincides with $S_0 + gS_{int}$ at some point $\zeta = \zeta_0$.
- 3. Convergence radius of the new perturbation theory is larger than $|\zeta_0|_+$

(1)

When might perturbation theory converge?

A sufficient condition for the analyticity of the correlator in the vicinity of g=0 is

 $|S_0| \gg |S_{\text{int}}|$ (A. G. Ushveridze, 1982)

General idea of the method

Choose in some way new S_0 and S_{int} and also a new expansion parameter ζ in such a way that

- 1. Condition (1) is fulfilled,
- 2. New action $S_0 + \zeta S_{int}$ coincides with $S_0 + gS_{int}$ at some point $\zeta = \zeta_0$.
- 3. Convergence radius of the new perturbation theory is larger than $|\zeta_0|$.

(1)

General remarks

- By proper choice of S₀ and S_{int} it is possible to achieve a perturbation theory without any spurious divergences (so-called superconvergent) (A. G. Ushveridze, 1984).
- In a large class of models, it is possible to choose S₀ and S_{int} in such a way as to represent the perturbation theory with respect to ζ by diagrams of the old (divergent) series (see e.g. A. G. Ushveridze, 1983). In this case, the proposed method works like some sort of resummation procedure (A. G. Ushveridze, 1982).

General remarks

- By proper choice of S₀ and S_{int} it is possible to achieve a perturbation theory without any spurious divergences (so-called superconvergent) (A. G. Ushveridze, 1984).
- In a large class of models, it is possible to choose S₀ and S_{int} in such a way as to represent the perturbation theory with respect to ζ by diagrams of the old (divergent) series (see e.g. A. G. Ushveridze, 1983). In this case, the proposed method works like some sort of resummation procedure (A. G. Ushveridze, 1982).

Main results

The most general class of models where it is possible to construct a convergent perturbation theory based on ordinary (divergent) diagrams can be described by the following action

 $S = S_0[\Phi] + S_{\rm int}[\Phi, \{g_\sigma\}],$

where

• $\Phi \equiv \{\phi, \psi, \chi, \ldots\} = \{\Phi^{(\alpha)}\}_{\alpha=1}^n$. All fields from the set $\{\Phi^{(\alpha)}\}$ are bosonic.

• $\{g_{\sigma}\}$ is a set of coupling constants

• MS-scheme, $D - \varepsilon$ regularization $(d^D k \rightarrow \mu^{\varepsilon} d^{D-\varepsilon} k)$

• $S_0[\Phi]$ is a massless free action, $S_{int}[\Phi, \{g_\sigma\}]$ is a λ -homogeneous functional, i.e.

 $S_{\rm int}[\{z^{\lambda_\alpha}\Phi^{(\alpha)}\},\{g_\sigma\}]=zS_{\rm int}[\{\Phi^{(\alpha)}\},\{g_\sigma\}],\qquad z\in\mathbb{C}.$

 \blacksquare \exists a nontrivial solution $\{\Phi_{st}^{(lpha)},g_{st}\}$ of the following system

The most general class of models where it is possible to construct a convergent perturbation theory based on ordinary (divergent) diagrams can be described by the following action

 $S = S_0[\Phi] + S_{\text{int}}[\Phi, \{g_\sigma\}],$

where

• $\Phi \equiv \{\phi, \psi, \chi, \ldots\} = \{\Phi^{(\alpha)}\}_{\alpha=1}^n$. All fields from the set $\{\Phi^{(\alpha)}\}$ are bosonic.

• $\{g_{\sigma}\}$ is a set of coupling constants

• MS-scheme, $D - \varepsilon$ regularization $(d^D k \rightarrow \mu^{\varepsilon} d^{D-\varepsilon} k)$

• $S_0[\Phi]$ is a massless free action, $S_{int}[\Phi, \{g_\sigma\}]$ is a λ -homogeneous functional, i.e.

 $S_{\rm int}[\{z^{\lambda_{\alpha}}\Phi^{(\alpha)}\}, \{g_{\sigma}\}] = zS_{\rm int}[\{\Phi^{(\alpha)}\}, \{g_{\sigma}\}], \qquad z \in \mathbb{C}.$

 \blacksquare \exists a nontrivial solution $\{\Phi_{st}^{(lpha)},g_{st}\}$ of the following system

 $\begin{cases} \delta S/\delta \Phi^{(\alpha)} = 0, \quad \alpha = 1, \dots, n, \\ S_{\text{int}}[\{\Phi^{(\alpha)}\}, \{g_{\sigma}(g_{st})\}] = -g_{st}^2/2 \end{cases}$

The most general class of models where it is possible to construct a convergent perturbation theory based on ordinary (divergent) diagrams can be described by the following action

 $S = S_0[\Phi] + S_{\text{int}}[\Phi, \{g_\sigma\}],$

where

• $\Phi \equiv \{\phi, \psi, \chi, \ldots\} = \{\Phi^{(\alpha)}\}_{\alpha=1}^n$. All fields from the set $\{\Phi^{(\alpha)}\}$ are bosonic.

• $\{g_{\sigma}\}$ is a set of coupling constants

• MS-scheme, $D - \varepsilon$ regularization $(d^D k \rightarrow \mu^{\varepsilon} d^{D - \varepsilon} k)$

• $S_0[\Phi]$ is a massless free action, $S_{\rm int}[\Phi, \{g_\sigma\}]$ is a λ -homogeneous functional, i.e.

$$S_{\rm int}[\{z^{\lambda_\alpha}\Phi^{(\alpha)}\},\{g_\sigma\}] = zS_{\rm int}[\{\Phi^{(\alpha)}\},\{g_\sigma\}], \qquad z\in\mathbb{C}.$$

 \blacksquare \exists a nontrivial solution $\{\Phi_{st}^{(lpha)},g_{st}\}$ of the following system

 $\begin{cases} \delta S/\delta \Phi^{(\alpha)} = 0, \quad \alpha = 1, \dots, n, \\ S_{\text{int}}[\{\Phi^{(\alpha)}\}, \{g_{\sigma}(g_{st})\}] = -g_{st}^2/2 \end{cases}$

The most general class of models where it is possible to construct a convergent perturbation theory based on ordinary (divergent) diagrams can be described by the following action

$$S = S_0[\Phi] + S_{\text{int}}[\Phi, \{g_\sigma\}],$$

where

• $\Phi \equiv \{\phi, \psi, \chi, \ldots\} = \{\Phi^{(\alpha)}\}_{\alpha=1}^n$. All fields from the set $\{\Phi^{(\alpha)}\}$ are bosonic.

• $\{g_{\sigma}\}$ is a set of coupling constants

• MS-scheme, $D - \varepsilon$ regularization $(d^D k \rightarrow \mu^{\varepsilon} d^{D - \varepsilon} k)$

• $S_0[\Phi]$ is a massless free action, $S_{int}[\Phi, \overline{\{g_\sigma\}}]$ is a λ -homogeneous functional, i.e.

$$S_{\rm int}[\{z^{\lambda_{\alpha}}\Phi^{(\alpha)}\},\{g_{\sigma}\}] = zS_{\rm int}[\{\Phi^{(\alpha)}\},\{g_{\sigma}\}], \qquad z \in \mathbb{C}.$$

a a nontrivial solution $\{\Phi_{st}^{(lpha)}, g_{st}\}$ of the following system

$$\begin{cases} \delta S/\delta \Phi^{(\alpha)} = 0, \quad \alpha = 1, \dots, n, \\ S_{\mathsf{int}}[\{\Phi^{(\alpha)}\}, \{g_{\sigma}(g_{st})\}] = -g_{st}^2/2. \end{cases}$$

Which physical models belong to the class described above?

The main requirement is the existence of an instanton solution of the equations of motion in the model under consideration.

- Euclidean field theories φⁿ
 See e.g. (B. Shaverdyan et at., 1983)
- Vector model \(\phi^4\) with cubic symmetry (two-couplings) See e.g. (M. Nalimov et al., 2020)
- Standard \$\phi^4\$-based models from A to H (dynamics and statics) See e.g. (J. Honkonen, et al., 2005, two papers)
- Kraichnan model of passive scalar advection in turbulent flow See e.g. (J. Andreanov, et al., 2006)

Construction of convergent perturbation theory

Replacement $\Phi^{(\alpha)} \longrightarrow z^{\lambda_{\alpha}} \Phi^{(\alpha)}$ selects in $S_0[\Phi]$ two terms $S_0[\Phi] = S_{01}[\Phi] + S_{02}[\Phi]$, where

$$S_{01}[\{z^{\lambda_{\alpha}}\Phi^{(\alpha)}\}] \equiv \sum_{k=1}^{m} z^{\Delta_{k}} S_{01}^{(k)}[\{\Phi^{(\alpha)}\}], \ \Delta_{k} < 1, \quad \forall k,$$
$$S_{02}[\{z^{\lambda_{\alpha}}\Phi^{(\alpha)}\}] = zS_{02}[\{\Phi^{(\alpha)}\}]$$

Proposed action restructuring scheme

$$S(\zeta) = S_{01}[\Phi] + S_{02}[\Phi] + \zeta S_{\text{int}}[\Phi, \{g_{\sigma}\}] + a(1-\zeta) \sum_{k=1}^{m} \left(S_{01}^{(k)}[\Phi]\right)^{1/\Delta_{k}}, \quad a > 0.$$

• ζ is a new (non-physical) expansion parameter • $S(\zeta = 1) = S_0[\Phi] + S_{int}[\Phi, \{g_\sigma\}] = S$

Construction of convergent perturbation theory

Replacement $\Phi^{(\alpha)} \longrightarrow z^{\lambda_{\alpha}} \Phi^{(\alpha)}$ selects in $S_0[\Phi]$ two terms $S_0[\Phi] = \overline{S_{01}[\Phi] + S_{02}[\Phi]}$, where

$$S_{01}[\{z^{\lambda_{\alpha}}\Phi^{(\alpha)}\}] \equiv \sum_{k=1}^{m} z^{\Delta_{k}} S_{01}^{(k)}[\{\Phi^{(\alpha)}\}], \ \Delta_{k} < 1, \quad \forall k,$$
$$S_{02}[\{z^{\lambda_{\alpha}}\Phi^{(\alpha)}\}] = zS_{02}[\{\Phi^{(\alpha)}\}]$$

Proposed action restructuring scheme

$$\mathbb{S}(\zeta) = S_{01}[\Phi] + S_{02}[\Phi] + \zeta S_{\text{int}}[\Phi, \{g_{\sigma}\}] + a(1-\zeta) \sum_{k=1}^{m} \left(S_{01}^{(k)}[\Phi]\right)^{1/\Delta_{k}}, \quad a > 0.$$

ζ is a new (non-physical) expansion paramete
 S(ζ = 1) = S₀[Φ] + S_{int}[Φ, {g_σ}] = S

Construction of convergent perturbation theory

Replacement $\Phi^{(\alpha)} \longrightarrow z^{\lambda_{\alpha}} \Phi^{(\alpha)}$ selects in $S_0[\Phi]$ two terms $S_0[\Phi] = \overline{S_{01}[\Phi] + S_{02}[\Phi]}$, where

$$S_{01}[\{z^{\lambda_{\alpha}}\Phi^{(\alpha)}\}] \equiv \sum_{k=1}^{m} z^{\Delta_{k}} S_{01}^{(k)}[\{\Phi^{(\alpha)}\}], \ \Delta_{k} < 1, \quad \forall k,$$
$$S_{02}[\{z^{\lambda_{\alpha}}\Phi^{(\alpha)}\}] = zS_{02}[\{\Phi^{(\alpha)}\}]$$

Proposed action restructuring scheme

$$\mathbb{S}(\zeta) = S_{01}[\Phi] + S_{02}[\Phi] + \zeta S_{\mathsf{int}}[\Phi, \{g_{\sigma}\}] + a(1-\zeta) \sum_{k=1}^{m} \left(S_{01}^{(k)}[\Phi]\right)^{1/\Delta_{k}}, \quad a > 0.$$

• ζ is a new (non-physical) expansion parameter • $S(\zeta = 1) = S_0[\Phi] + S_{int}[\Phi, \{g_\sigma\}] = S$

The proof of the convergence of the series with respect to ζ is based on the instanton analysis of the asymptotics of the higher order expansion coefficients.

Nth term:
$$\frac{1}{2\pi i} \oint_{\gamma} \frac{du}{u} \int \mathcal{D}[\Phi] \dots e^{-S_0[\Phi] - S_{int}[\Phi, \{g_\sigma\}]} e^{-N \ln u} \implies \text{saddle-point method.}$$

At the fixed point g_{σ} are proportional to some powers of $\varepsilon \Longrightarrow g_{\sigma} = u^{q(\sigma)} \bar{g}_{\sigma}, \ q(\sigma) \in \mathbb{N}.$

Standard perturbation theory (by variable u) After changing of variables $\Phi^{(\alpha)} \longrightarrow \Phi^{(\alpha)}/u$ and $u \longrightarrow u/\sqrt{N}$, the Nth term becomes proportional to $(N!)^{1/2}$ and the stationarity equations take the form

$$\begin{cases} \frac{\delta}{\delta \Phi^{(\alpha)}} \Big(S_0 + S_{\rm int} \Big) = 0, \\ S_0 + S_{\rm int} = -u^2/2. \end{cases}$$

New perturbation theory (by variable ζ) Replacement $\Phi^{(\alpha)} \longrightarrow N^{\lambda_{\alpha}} \Phi^{(\alpha)}/u$ in the action $\delta(\zeta)$ leads to the new stationarity equations

$$\begin{cases} \frac{\delta}{\delta\Phi^{(\alpha)}} \Big(S_0 + \frac{\zeta}{u^2} \frac{S_{\text{int}}}{a(1-\zeta)} \Big) = 0, \\ S_{\text{int}} - a \sum_k \Big(S_{01}^{(k)} \Big)^{1/\Delta_k} = -u^2/\zeta. \end{cases}$$

M. Nalimov (SPbU)

MQFT 2022

The proof of the convergence of the series with respect to ζ is based on the instanton analysis of the asymptotics of the higher order expansion coefficients.

Nth term:
$$\frac{1}{2\pi i} \oint_{\gamma} \frac{du}{u} \int \mathcal{D}[\Phi] \dots e^{-S_0[\Phi] - S_{int}[\Phi, \{g_\sigma\}]} e^{-N \ln u} \implies \text{saddle-point method.}$$

At the fixed point g_{σ} are proportional to some powers of $\varepsilon \Longrightarrow g_{\sigma} = u^{q(\sigma)} \bar{g}_{\sigma}, \ q(\sigma) \in \mathbb{N}.$

Standard perturbation theory (by variable u) After changing of variables $\Phi^{(\alpha)} \longrightarrow \Phi^{(\alpha)}/u$ and $u \longrightarrow u/\sqrt{N}$, the Nth term becomes proportional to $(N!)^{1/2}$ and the stationarity equations take the form

$$\begin{cases} \frac{\delta}{\delta \Phi^{(\alpha)}} \Bigl(S_0 + S_{\rm int}\Bigr) = 0, \\ S_0 + S_{\rm int} = -u^2/2. \end{cases}$$

New perturbation theory (by variable ζ) Replacement $\Phi^{(\alpha)} \longrightarrow N^{\lambda_{\alpha}} \Phi^{(\alpha)}/u$ in the action $\mathcal{B}(\zeta)$ leads to the new stationarity equations

$$\begin{cases} \frac{\delta}{\delta\Phi^{(\alpha)}} \left(S_0 + \frac{\zeta}{u^2} \frac{S_{\text{int}}}{a(1-\zeta)} \right) = 0, \\ S_{\text{int}} - a \sum_k \left(S_{01}^{(k)} \right)^{1/\Delta_k} = -u^2/\zeta. \end{cases}$$

The proof of the convergence of the series with respect to ζ is based on the instanton analysis of the asymptotics of the higher order expansion coefficients.

Nth term:
$$\frac{1}{2\pi i} \oint_{\gamma} \frac{du}{u} \int \mathcal{D}[\Phi] \dots e^{-S_0[\Phi] - S_{int}[\Phi, \{g_\sigma\}]} e^{-N \ln u} \implies \text{saddle-point method.}$$

At the fixed point g_{σ} are proportional to some powers of $\varepsilon \Longrightarrow g_{\sigma} = u^{q(\sigma)} \bar{g}_{\sigma}, \ q(\sigma) \in \mathbb{N}.$

Standard perturbation theory (by variable u) After changing of variables $\Phi^{(\alpha)} \longrightarrow \Phi^{(\alpha)}/u$ and $u \longrightarrow u/\sqrt{N}$, the Nth term becomes proportional to $(N!)^{1/2}$ and the stationarity equations take the form

$$\begin{cases} \frac{\delta}{\delta \Phi^{(\alpha)}} \Bigl(S_0 + S_{\rm int}\Bigr) = 0, \\ S_0 + S_{\rm int} = -u^2/2. \end{cases}$$

New perturbation theory (by variable ζ) Replacement $\Phi^{(\alpha)} \longrightarrow N^{\lambda_{\alpha}} \Phi^{(\alpha)}/u$ in the action $S(\zeta)$ leads to the new stationarity equations

$$\begin{cases} \frac{\delta}{\delta\Phi^{(\alpha)}} \left(S_0 + \frac{\zeta}{u^2} \frac{S_{\text{int}}}{a(1-\zeta)} \right) = 0, \\ S_{\text{int}} - a \sum_k \left(S_{01}^{(k)} \right)^{1/\Delta_k} = -u^2/\zeta. \end{cases}$$

Stationarity equations for $\mathcal{S}(\zeta)$ in detailed notation

$$\{\Phi_{st}^{(\alpha)}, u_{st}\} \Longrightarrow \begin{cases} \frac{\delta}{\delta\Phi^{(\alpha)}} \left(\sum_{k} \left(u^{-2} S_{01}^{(k)}[\Phi]\right)^{1/\Delta_{k}} + S_{02}[\Phi] + \frac{\zeta}{u^{2}} \frac{S_{\mathsf{int}}[\Phi, \{\bar{g}_{\sigma}\}]}{a(1-\zeta)}\right) = 0, \quad (\heartsuit) \\ S_{\mathsf{int}}[\Phi, \{\bar{g}_{\sigma}\}] - a \sum_{k} \left(S_{01}^{(k)}[\Phi]\right)^{1/\Delta_{k}} = -u^{2}/\zeta. \quad (\diamondsuit) \end{cases}$$

Equation (\heartsuit) is invariant under replacement $\Phi_{st}^{(\alpha)} \longrightarrow z^{\lambda_{\alpha}} \Phi_{st}^{(\alpha)}$. In turn, the left-hand side of (\diamondsuit) is multiplied by z with such a replacement, i.e. we can always satisfy (\diamondsuit).

Stationarity equations for $\mathcal{S}(\zeta)$ in detailed notation

$$\{\Phi_{st}^{(\alpha)}, u_{st}\} \Longrightarrow \begin{cases} \frac{\delta}{\delta\Phi^{(\alpha)}} \left(\sum_{k} \left(u^{-2} S_{01}^{(k)}[\Phi]\right)^{1/\Delta_{k}} + S_{02}[\Phi] + \frac{\zeta}{u^{2}} \frac{S_{\text{int}}[\Phi, \{\bar{g}_{\sigma}\}]}{a(1-\zeta)}\right) = 0, \quad (\heartsuit) \\ S_{\text{int}}[\Phi, \{\bar{g}_{\sigma}\}] - a \sum_{k} \left(S_{01}^{(k)}[\Phi]\right)^{1/\Delta_{k}} = -u^{2}/\zeta. \quad (\diamondsuit) \end{cases}$$

Equation (\heartsuit) is invariant under replacement $\Phi_{st}^{(\alpha)} \longrightarrow z^{\lambda_{\alpha}} \Phi_{st}^{(\alpha)}$. In turn, the left-hand side of (\diamondsuit) is multiplied by z with such a replacement, i.e. we can always satisfy (\diamondsuit).

Let us define

$$\begin{split} & \left. \frac{\delta}{\delta \Phi^{(\alpha)}} \Biggl(u^2 \sum_k \left(u^{-2} S_{01}^{(k)}[\Phi] \right)^{1/\Delta_k} + u^2 S_{02}[\Phi] \Biggr) \right|_{\{\Phi_{st}, u_{st}\}} \equiv A(u_{st}), \\ & \left. \frac{\delta}{\delta \Phi^{(\alpha)}} \Bigl(S_{\mathsf{int}}[\Phi, \{\bar{g}_{\sigma}\}] \Bigr) \right|_{\Phi_{st}} = -\frac{\delta}{\delta \Phi^{(\alpha)}} \Bigl(S_{01}[\Phi] \Bigr) \Big|_{\Phi_{st}} = -B. \end{split}$$

Then, the equation (\heartsuit) can be satisfied by an appropriate choice of ζ

$$\zeta_{st} = \frac{1}{1 + B/aA(u_{st})}$$

The largest contribution to the asymptotics of $G^{(N)}, N \to \infty$ is given by $|\sim e^{N \ln \zeta_{st}} = \zeta_{st}^N$

$$R = \lim_{N \to \infty} \left| \frac{G^{(N)}}{G^{(N+1)}} \right| = |\zeta_{\mathsf{st}}|.$$

Let us define

$$\begin{aligned} \frac{\delta}{\delta\Phi^{(\alpha)}} &\left(u^2 \sum_k \left(u^{-2} S_{01}^{(k)}[\Phi] \right)^{1/\Delta_k} + u^2 S_{02}[\Phi] \right) \bigg|_{\{\Phi_{st}, u_{st}\}} \equiv A(u_{st}), \\ \frac{\delta}{\delta\Phi^{(\alpha)}} &\left(S_{\text{int}}[\Phi, \{\bar{g}_{\sigma}\}] \right) \bigg|_{\Phi_{st}} = -\frac{\delta}{\delta\Phi^{(\alpha)}} \left(S_{01}[\Phi] \right) \bigg|_{\Phi_{st}} = -B. \end{aligned}$$

Then, the equation (\heartsuit) can be satisfied by an appropriate choice of ζ

$$\zeta_{st} = \frac{1}{1 + B/aA(u_{st})}$$

The largest contribution to the asymptotics of $G^{(N)}, \; N o \infty$ is given by $|\sim e^{N \ln \zeta_{st}} = \zeta_{st}^N$

$$R = \lim_{N \to \infty} \left| \frac{G^{(N)}}{G^{(N+1)}} \right| = |\zeta_{\mathsf{st}}|.$$

Let us define

$$\begin{split} & \left. \frac{\delta}{\delta \Phi^{(\alpha)}} \Biggl(u^2 \sum_k \left(u^{-2} S_{01}^{(k)}[\Phi] \right)^{1/\Delta_k} + u^2 S_{02}[\Phi] \Biggr) \right|_{\{\Phi_{st}, u_{st}\}} \equiv A(u_{st}), \\ & \left. \frac{\delta}{\delta \Phi^{(\alpha)}} \Bigl(S_{\mathsf{int}}[\Phi, \{\bar{g}_{\sigma}\}] \Bigr) \right|_{\Phi_{st}} = -\frac{\delta}{\delta \Phi^{(\alpha)}} \Bigl(S_{01}[\Phi] \Bigr) \Big|_{\Phi_{st}} = -B. \end{split}$$

Then, the equation (\heartsuit) can be satisfied by an appropriate choice of ζ

$$\zeta_{st} = \frac{1}{1 + B/aA(u_{st})}$$

The largest contribution to the asymptotics of $G^{(N)}, N \to \infty$ is given by $\left| \sim e^{N \ln \zeta_{st}} = \zeta_{st}^N \right|$

$$R = \lim_{N \to \infty} \left| \frac{G^{(N)}}{G^{(N+1)}} \right| = |\zeta_{\rm st}|.$$

Convenient representation for correlators

The representation of the 2s-point correlator using the known diagrams of the standard (divergent) perturbation theory is based on the following chain of identities

$$\prod_{k=1}^{m} e^{-a(1-\zeta) \left(S_{01}^{(k)}\right)^{1/\Delta_{k}}} \theta\left(S_{01}^{(k)}\right) = \prod_{k=1}^{m} \int_{-\infty}^{\infty} \mathrm{d}y_{k} \delta(y_{k} - S_{01}^{(k)}) \theta(y_{k}) e^{-a(1-\zeta)y_{k}^{1/\Delta_{k}}} = \prod_{k=1}^{m} \int_{0}^{\infty} \mathrm{d}y_{k} \int_{-\infty}^{\infty} \mathrm{d}y_{k}' e^{-a(1-\zeta)y_{k}^{1/\Delta_{k}} + iy_{k}' \left(y_{k} - S_{01}^{(k)}\right)}$$

$$G_s(\{\bar{g}_{\sigma}\},\zeta,a) = \prod_{k=1}^m \int\limits_{-\infty}^{\infty} \mathrm{d}y'_k \int\limits_{0}^{\infty} \mathrm{d}y_k \; \frac{e^{-a(1-\zeta)y_k^{1/\Delta_k} + iy'_k y_k}}{\left(1 + iy'_k\right)^{r(s,k)/2}} G_s\left(\left\{\frac{\zeta \bar{g}_{\sigma}}{\left(1 + iy'_k\right)^{\Delta_k/2}}\right\}\right)$$

UV problem

$$Z_e = 1 + \frac{Z_e^1}{\varepsilon} + O\left(\frac{1}{\varepsilon^2}\right), \ Z_e \to \mathscr{Z}_e = Z_e\left(\left\{\frac{\zeta \bar{g}_\sigma}{\left(1 + i y_k'\right)^{\Delta_k/2}}\right\}\right), \ e = (\{\Phi^{(\alpha)}\}, \{\bar{g}_\sigma\}, \mathsf{etc.})$$

IR problem RG equation in our approach

$$\begin{bmatrix} \mu \partial_{\mu} + \sum_{n=1}^{\infty} \beta_{n}^{\zeta} \partial_{g}^{n} - \gamma_{\tau}^{\zeta} \tau \partial_{\tau} + \gamma_{s}^{\zeta} \end{bmatrix} G_{s}^{R}(\zeta) = 0.$$

$$G_{s}^{R}(\zeta = 1) = G_{s}^{R} \implies \text{at} \quad \zeta = 1 \quad \beta_{n}^{\zeta} = 0 \quad \text{for all} \quad k > 1.$$

UV problem

$$Z_e = 1 + \frac{Z_e^1}{\varepsilon} + O\left(\frac{1}{\varepsilon^2}\right), \ Z_e \to \mathscr{Z}_e = Z_e\left(\left\{\frac{\zeta \bar{g}_{\sigma}}{\left(1 + i y_k'\right)^{\Delta_k/2}}\right\}\right), \ e = (\{\Phi^{(\alpha)}\}, \{\bar{g}_{\sigma}\}, \mathsf{etc.})$$

IR problem
 RG equation in our approach

$$\left[\mu\partial_{\mu} + \sum_{n=1}^{\infty} \beta_n^{\zeta} \partial_g^n - \gamma_{\tau}^{\zeta} \tau \partial_{\tau} + \gamma_s^{\zeta}\right] G_s^R(\zeta) = 0.$$

 $G^R_s(\zeta=1)=G^R_s\quad \Longrightarrow \quad \text{at}\quad \zeta=1\quad \beta^\zeta_n=0 \quad \text{for all} \quad k>1.$

UV problem

$$Z_e = 1 + \frac{Z_e^1}{\varepsilon} + O\left(\frac{1}{\varepsilon^2}\right), \ Z_e \to \mathscr{Z}_e = Z_e\left(\left\{\frac{\zeta \bar{g}_{\sigma}}{\left(1 + i y_k'\right)^{\Delta_k/2}}\right\}\right), \ e = (\{\Phi^{(\alpha)}\}, \{\bar{g}_{\sigma}\}, \mathsf{etc.})$$

IR problem
 RG equation in our approach

$$\begin{bmatrix} \mu \partial_{\mu} + \sum_{n=1}^{\infty} \beta_{n}^{\zeta} \partial_{g}^{n} - \gamma_{\tau}^{\zeta} \tau \partial_{\tau} + \gamma_{s}^{\zeta} \end{bmatrix} G_{s}^{R}(\zeta) = 0.$$

$$G_{s}^{R}(\zeta = 1) = G_{s}^{R} \implies \text{at} \quad \zeta = 1 \quad \beta_{n}^{\zeta} = 0 \quad \text{for all} \quad k > 1.$$

UV problem

$$Z_e = 1 + \frac{Z_e^1}{\varepsilon} + O\left(\frac{1}{\varepsilon^2}\right), \ Z_e \to \mathscr{Z}_e = Z_e\left(\left\{\frac{\zeta \bar{g}_{\sigma}}{\left(1 + i y_k'\right)^{\Delta_k/2}}\right\}\right), \ e = (\{\Phi^{(\alpha)}\}, \{\bar{g}_{\sigma}\}, \mathsf{etc.})$$

IR problem
 RG equation in our approach

Thanks for your attention

m.nalimov@spbu.ru ovsiannikov.andre@gmail.com

References

- [1] A. G. Ushveridze, Soviet J. Nuclear Phys., 38, 475–480, 1984.
- [2] B. Shaverdyan and A. Ushveridze, *Phys. Lett. B*, **123**, 316-318, 1983.
- [3] A. Ushveridze, *Phys. Lett. B*, **142**, 403-406, 1984.
- [4] J. Honkonen and M. Yu. Nalimov, *Physics Letters B*, **459**, 582-588, 1999.
- [5] J. Honkonen et al., Acta Physica Slovaca, 52, 4, 303, 2002.
- [6] M. Nalimov and A. Ovsyannikov, *Theoret. and Math. Phys.*, **204**, 1033-1045, 2020.
- [7] J. Honkonen, et al., Nuclear Physics, 714, 292-306, 2005.
- [8] J. Honkonen, et al., *Nuclear Physics*, **707**, 493-508, 2005.
- 9 J. Andreanov, et al., Journal of Physics A, **39**, 7815-7824, 2006.