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Introduction Divergent perturbation theory in QFT. Standard problems

Divergent Perturbation Theory

Divergent series in QFT = infinite single terms + divergence of the total sum.

Individual infinite diagrams:
1. Ultraviolet problem

Standard solution: regularization and some renormalization scheme.
2. Infrared problem

Standard solution: renormalization group (RG)

Infinite series sum: power series of perturbation theory are asymptotic.
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Introduction Asymptotic character of perturbation theory power series

Asymptotic nature of perturbation theory

Asymptotic series in QFT:

G =
∑
N

G(N)gN , G(N) ∼ N !(−A)NNBC, N → ∞, A,B,C <∞.

Standard solution: various resummation procedures.

How is perturbation theory constructed in QFT?

Typical object:
∫

D[Φ] e−S0−gSint =

∫
D[Φ]e−S0

∞∑
N=0

(−g)N

N !
(Sint)

N ⇒
∞∑

N=0

∫
D[Φ] . . .

What is the reason for the divergence?

In all realistic field theories we have S0 ⩾ 0 and |Sint| ≫ |S0| (Dyson’s argument).
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Convergent perturbation theory When might perturbation theory converge?

When might perturbation theory converge?

A sufficient condition for the analyticity of the correlator in the vicinity of g = 0 is

|S0| ≫ |Sint| (A. G. Ushveridze, 1982) (1)

General idea of the method

Choose in some way new S0 and Sint and also a new expansion parameter ζ in such a way that

1. Condition (1) is fulfilled,
2. New action S0 + ζ Sint coincides with S0 + gSint at some point ζ = ζ0.
3. Convergence radius of the new perturbation theory is larger than |ζ0|.
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Convergent perturbation theory General remarks about the method

General remarks

By proper choice of S0 and Sint it is possible to achieve a perturbation theory without any
spurious divergences (so-called superconvergent) (A. G. Ushveridze, 1984).

In a large class of models, it is possible to choose S0 and Sint in such a way as to
represent the perturbation theory with respect to ζ by diagrams of the old (divergent)
series (see e.g. A. G. Ushveridze, 1983). In this case, the proposed method works like
some sort of resummation procedure (A. G. Ushveridze, 1982).
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Main results General requirements for the field model

General requirements for the field model
The most general class of models where it is possible to construct a convergent perturbation
theory based on ordinary (divergent) diagrams can be described by the following action

S = S0[Φ] + Sint[Φ, {gσ}],

where
Φ ≡ {ϕ, ψ, χ, . . .} = {Φ(α)}nα=1. All fields from the set {Φ(α)} are bosonic.
{gσ} is a set of coupling constants
MS-scheme, D − ε regularization (dDk → µεdD−εk)
S0[Φ] is a massless free action, Sint[Φ, {gσ}] is a λ-homogeneous functional, i.e.

Sint[{zλαΦ(α)}, {gσ}] = zSint[{Φ(α)}, {gσ}], z ∈ C.

∃ a nontrivial solution {Φ(α)
st , gst} of the following system{

δS/δΦ(α) = 0, α = 1, . . . , n,

Sint[{Φ(α)}, {gσ(gst)}] = −g2st/2.

M. Nalimov (SPbU) MQFT 2022 Oct. 10, 2022



Main results General requirements for the field model

General requirements for the field model
The most general class of models where it is possible to construct a convergent perturbation
theory based on ordinary (divergent) diagrams can be described by the following action

S = S0[Φ] + Sint[Φ, {gσ}],

where
Φ ≡ {ϕ, ψ, χ, . . .} = {Φ(α)}nα=1. All fields from the set {Φ(α)} are bosonic.
{gσ} is a set of coupling constants
MS-scheme, D − ε regularization (dDk → µεdD−εk)
S0[Φ] is a massless free action, Sint[Φ, {gσ}] is a λ-homogeneous functional, i.e.

Sint[{zλαΦ(α)}, {gσ}] = zSint[{Φ(α)}, {gσ}], z ∈ C.

∃ a nontrivial solution {Φ(α)
st , gst} of the following system{

δS/δΦ(α) = 0, α = 1, . . . , n,

Sint[{Φ(α)}, {gσ(gst)}] = −g2st/2.

M. Nalimov (SPbU) MQFT 2022 Oct. 10, 2022



Main results General requirements for the field model

General requirements for the field model
The most general class of models where it is possible to construct a convergent perturbation
theory based on ordinary (divergent) diagrams can be described by the following action

S = S0[Φ] + Sint[Φ, {gσ}],

where
Φ ≡ {ϕ, ψ, χ, . . .} = {Φ(α)}nα=1. All fields from the set {Φ(α)} are bosonic.
{gσ} is a set of coupling constants
MS-scheme, D − ε regularization (dDk → µεdD−εk)
S0[Φ] is a massless free action, Sint[Φ, {gσ}] is a λ-homogeneous functional, i.e.

Sint[{zλαΦ(α)}, {gσ}] = zSint[{Φ(α)}, {gσ}], z ∈ C.

∃ a nontrivial solution {Φ(α)
st , gst} of the following system{

δS/δΦ(α) = 0, α = 1, . . . , n,

Sint[{Φ(α)}, {gσ(gst)}] = −g2st/2.

M. Nalimov (SPbU) MQFT 2022 Oct. 10, 2022



Main results General requirements for the field model

General requirements for the field model
The most general class of models where it is possible to construct a convergent perturbation
theory based on ordinary (divergent) diagrams can be described by the following action

S = S0[Φ] + Sint[Φ, {gσ}],

where
Φ ≡ {ϕ, ψ, χ, . . .} = {Φ(α)}nα=1. All fields from the set {Φ(α)} are bosonic.
{gσ} is a set of coupling constants
MS-scheme, D − ε regularization (dDk → µεdD−εk)
S0[Φ] is a massless free action, Sint[Φ, {gσ}] is a λ-homogeneous functional, i.e.

Sint[{zλαΦ(α)}, {gσ}] = zSint[{Φ(α)}, {gσ}], z ∈ C.

∃ a nontrivial solution {Φ(α)
st , gst} of the following system{

δS/δΦ(α) = 0, α = 1, . . . , n,

Sint[{Φ(α)}, {gσ(gst)}] = −g2st/2.

M. Nalimov (SPbU) MQFT 2022 Oct. 10, 2022



Main results Physical Models

Which physical models belong to the class described above?

The main requirement is the existence of an instanton solution of the equations of motion in
the model under consideration.

Euclidean field theories ϕn
See e.g. (B. Shaverdyan et at., 1983)
Vector model ϕ4 with cubic symmetry (two-couplings)
See e.g. (M. Nalimov et al., 2020)
Standard ϕ4-based models from A to H (dynamics and statics)
See e.g. (J. Honkonen, et al., 2005, two papers)
Kraichnan model of passive scalar advection in turbulent flow
See e.g. (J. Andreanov, et al., 2006)
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Main results Construction of models with convergent series

Construction of convergent perturbation theory

Replacement Φ(α) −→ zλαΦ(α) selects in S0[Φ] two terms S0[Φ] = S01[Φ] + S02[Φ], where

S01[{zλαΦ(α)}] ≡
m∑
k=1

z∆kS
(k)
01 [{Φ(α)}], ∆k < 1, ∀k,

S02[{zλαΦ(α)}] = zS02[{Φ(α)}]

Proposed action restructuring scheme

S(ζ) = S01[Φ] + S02[Φ] + ζSint[Φ, {gσ}] + a(1− ζ)

m∑
k=1

(
S
(k)
01 [Φ]

)1/∆k

, a > 0.

ζ is a new (non-physical) expansion parameter
S(ζ = 1) = S0[Φ] + Sint[Φ, {gσ}] = S
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Main results Proof of series convergence

Main points of the proof of convergence
The proof of the convergence of the series with respect to ζ is based on the instanton analysis
of the asymptotics of the higher order expansion coefficients.

Nth term: 1

2πi

∮
γ

du

u

∫
D[Φ] . . . e−S0[Φ]−Sint[Φ,{gσ}]e−N lnu =⇒ saddle-point method.

At the fixed point gσ are proportional to some powers of ε =⇒ gσ = uq(σ)ḡσ, q(σ) ∈ N.

Standard perturbation theory (by variable u)
After changing of variables Φ(α) −→ Φ(α)/u and
u −→ u/

√
N , the Nth term becomes proportional

to (N !)1/2 and the stationarity equations take the
form 

δ

δΦ(α)

(
S0 + Sint

)
= 0,

S0 + Sint = −u2/2.

New perturbation theory (by variable ζ)
Replacement Φ(α) −→ NλαΦ(α)/u in the action
S(ζ) leads to the new stationarity equations

δ

δΦ(α)

(
S0 +

ζ

u2
Sint

a(1− ζ)

)
= 0,

Sint − a
∑
k

(
S
(k)
01

)1/∆k

= −u2/ζ.
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Main results Proof of series convergence

Main points of the proof of convergence

Stationarity equations for S(ζ) in detailed notation

{Φ(α)
st , ust} =⇒


δ

δΦ(α)

(∑
k

(
u−2S

(k)
01 [Φ]

)1/∆k

+ S02[Φ] +
ζ

u2
Sint[Φ, {ḡσ}]
a(1− ζ)

)
= 0, (♡)

Sint[Φ, {ḡσ}]− a
∑
k

(
S
(k)
01 [Φ]

)1/∆k

= −u2/ζ. (♢)

Equation (♡) is invariant under replacement Φ(α)
st −→ zλαΦ

(α)
st . In turn, the left-hand side of

(♢) is multiplied by z with such a replacement, i.e. we can always satisfy (♢).
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∑
k

(
S
(k)
01 [Φ]

)1/∆k

= −u2/ζ. (♢)

Equation (♡) is invariant under replacement Φ(α)
st −→ zλαΦ

(α)
st . In turn, the left-hand side of

(♢) is multiplied by z with such a replacement, i.e. we can always satisfy (♢).

M. Nalimov (SPbU) MQFT 2022 Oct. 10, 2022



Main results Proof of series convergence

Main points of the proof of convergence
Let us define

δ

δΦ(α)

(
u2
∑
k

(
u−2S

(k)
01 [Φ]

)1/∆k

+ u2S02[Φ]

)∣∣∣∣∣
{Φst,ust}

≡ A(ust),

δ

δΦ(α)

(
Sint[Φ, {ḡσ}]

)∣∣∣
Φst

= − δ

δΦ(α)

(
S01[Φ]

)∣∣∣
Φst

= −B.

Then, the equation (♡) can be satisfied by an appropriate choice of ζ

ζst =
1

1 +B/aA(ust)

The largest contribution to the asymptotics of G(N), N → ∞ is given by ∼ eN ln ζst = ζNst

R = lim
N→∞

∣∣∣∣∣ G(N)

G(N+1)

∣∣∣∣∣ = |ζst|.
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Main results Diagram technique

Convenient representation for correlators
The representation of the 2s-point correlator using the known diagrams of the standard
(divergent) perturbation theory is based on the following chain of identities

m∏
k=1

e
−a(1−ζ)

(
S
(k)
01

)1/∆k

θ
(
S
(k)
01

)
=

m∏
k=1

∞∫
−∞

dykδ(yk − S
(k)
01 )θ(yk)e

−a(1−ζ)y
1/∆k
k =

m∏
k=1

∞∫
0

dyk
∞∫

−∞

dy′ke
−a(1−ζ)y

1/∆k
k +iy′k

(
yk−S

(k)
01

)

⇓

Gs({ḡσ}, ζ, a) =
m∏
k=1

∞∫
−∞

dy′k
∞∫
0

dyk
e−a(1−ζ)yk

1/∆k+iy′kyk(
1 + iy′k

)r(s,k)/2 Gs

({
ζḡσ(

1 + iy′k
)∆k/2

})

M. Nalimov (SPbU) MQFT 2022 Oct. 10, 2022



Main results IR and UV problems

UV and IR behavior in convergent approach
UV problem

Ze = 1 +
Z1
e

ε
+O

(
1

ε2

)
, Ze → Ze = Ze

({
ζḡσ(

1 + iy′k
)∆k/2

})
, e = ({Φ(α)}, {ḡσ}, etc.)

IR problem
RG equation in our approach[

µ∂µ +

∞∑
n=1

βζn∂
n
g − γζτ τ∂τ + γζs

]
GR

s (ζ) = 0.

GR
s (ζ = 1) = GR

s =⇒ at ζ = 1 βζn = 0 for all k > 1.

⇓[
µ∂µ + βζg∂g − γζτ τ∂τ + γζk

]
G

SR(ζ)
2k (ζ) = 0, βζ

g ≡ β1
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