Dynamic critical behaviour of superfluid phase transition
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Critical Slowing Down and stochastic dynamics

Critical slowing down is considered to be an important indicator for predicting critical
transitions in dynamical systems:
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Phenomenological stochastic fields theory are often based on the form of Langevin's
equations:
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where a5, - Onsager’s coefficients, 8., — intermode coupling coefficients



Time-dependent Green's function at finite temperature

Grand-canonical expectation value of the time-ordered product of Heisenberg field
operators is the definition used here for the time-dependent Green functions at finite

temperature:
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Path integral formalism

to-ifp

The generating functional of the Green function can be written as
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where the action:
S= /dt/dx (vtoy — H) (6)
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Hamiltonian and propagators

We are investigating a non-relativistic gas of scalar bosons with a local repulsive
density-density interaction near the critical point of condensation. Thus, the Hamilton
operator is chosen in the form:
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where 1,9 - annihilation and creation field operators consisting of operator of
creation and annihilation operators with usual commutators, © - chemical potential, m
- mass of a particle, g - coupling constant. The propagators have the following form:
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where 7 = —Imt, n. = (e%¢ —1)~1, e = k?/(2mo) — p1, k — momentum, © —

Heaviside step function.



Divergences and their regularization

Let us consider two-point Green's function

Ga(a,32) = Tr {pe T [Bulxa)df; ()] } ®

First order correction to the Green's function:
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The linear growth in time t; — t» obtained here is not a divergence, but nevertheless it
is unusual behaviour of the loop correction. Oscillating time dependence occurs in
other graphs as well with the subsequent generation of apparent divergences. It is
utterly annoying to collect all the relevant terms prior passing to the limit of whole
time axis. Therefore, one can find it convenient to regularize these IR divergences so
that each separate has a finite limit, when tf — oo, t; —+ —o0.



Divergences and their regularization

It is convenient to use a different set of Green function. To this end, let us introduce a

new set of fields:

n YR — YA
nto| L | vk -k
€ V2 | Yr+Ya
3 vE+ Y%

9

Regularized propagators:

(€etyo = —ie(t—t)—y[t—t'| (2ne + 1),

(¢ 77+>o — ot — r/)e—ia(tft’),w\:fr/‘y

(w7 €0 = vaeTielo—iT=)=vlo =t 1 3),

(nntye =0,
wrwho =T ot — =) 4 ne),
(metyo = —o( — t)e—ia(t—t’)—w\t—tﬂ‘

(¢ w4;>°: ﬁe’is(t7t°+i7>’7‘[7'°‘ns,

If we put tp (or choose ant other finite value), them the vertices of the density
operator field remain connected to others and we are left with the full perturbation
theory. For problems with time scales of the order of relaxation time this is appropriate
choice. Here, we are interested in the situation at times much larger that the
relaxation time and in this case it is reasonable to send the reference time tg to —co



IR effective field theory

This leads to propagators of the effective IR theory in dimensionless variables in the
form:

(66 ET (1, K)o = Alf g (t,K) = eIl
(n(t, k)™ (', —k))
(E(E T (', K)o = Areg(t, k) = 6(t — t')e ik (=) =ak®le=t'l - (10
((tKEH(, K)o = —Breg(t, k) = —0(t' — t)e~ vk (=t —ak¥l=t]
Bare action:

S = 4nant + n+(8t —iaul — aD)E + £V (0r — iqul + al)n+
(11)

+ ’g;“ netee+ Eneetet



Canonical dimension of fields and parameters of the effective IR model
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The model is logarithmic in the four-dimensional space.



Two loops calculation
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Two loops calculation

The coefficients at the counterterms Z; were calculated in the MS scheme in the
leading order perturbation theory:
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B and v functions:
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Fixed points
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The trivial fixed point g1, = g2« = 0 with arbitrary u.. Eigenvalues of the Jacobi
matrix wjj = 9;3; are (—¢, —¢, 0) confirming the IR instability of the fixed point

8ok = —2m2€, wy = % = 0. The infinite value u, is taken into account due to the
nonperturbative nature of the charge u. This fixed point leads to eigenvalues of
the matrix w;; equal to (¢, —%,0). Thus, this is an unstable saddle point. It
corresponds to quantum-mechanical behaviour of the system described by

oscillating propagator without attenuation.
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g1x = 0,224 = —%, ux = 0. Eigenvalues of the w matrix are (e, ¢,25; log %)

The positive sign of all eigenvalues at € > 0 means that this fixed point is IR
stable.



Fixed point and critical exponent z

The only one IR stable point is gr« = 0, gix = —872¢/5, ux = 0. Its matrix w: (¢, €/5,
2log(4/3) €2 /25)

¢ =001¢%, 4 =00245218¢%, v = —0.0145218¢°. (13)

z =2+ 0.0145218¢% + O(€3) (14)

At the fixed point, the action of the model is differ from known 2-component
stochastic model A only by change of the notation and a trivial rescaling parameters
and fields. gt = @] + ¢y, n=i¢h — ¢}, " = b1 + i, £ = ¢1 — i

Sa=—a¢? + ¢/ (0:¢ — alre + “—f&) (15)



3-loop Feynman diagrams

At the third order of the perturbation theory there are three topological types of the
diagrams, depicted below:
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It is easily seen that the first type of these diagrams is a product of two diagrams of
the first order. Z; can be express as:
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Stability of the fixed point

Next to leading calculation of w matrix yields the following eigenvalues:

€+ 0.68€2
0.2¢ + 0.245739¢2 (16)
0.0230146€2 — 0.0258336¢>

At € = 1 it seems that the fixed point loses stability, however it is well known that
such series are essentially asymptotic:

w1 = 0.2116697531
w2 = 1.078902843 (17)
w3 = 0.003120033385



Equivalence of F and A models of stochastic dynamics

Static action of model F:
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Power counting shows that a3 is the most IR-relevant theory parameter. Because a3 is
the coefficient of the action term m/d;u; is quadratic in the fields, and its influence on
the perturbation theory diagrams is therefore not initially obvious.
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Conclusion

» We derived microscopic model suitable for superfluid transition.

» Then we performed construction of IR effective field theory. Proved
renormalizability of the theory. Calculated z critical exponent at two-loops order

> Finally we investigated stability of the only one fixed point at 3-loop order and
showed why stochastic model F can be reduced to model A.



