
Renormalization group in a model of
self-organized criticality: Anisotropic system in
isotropic environment

Aleksandr Luchin
October 11, 2022

Supervisor: N.V. Antonov
Saint Petersburg State University
Department of High Energy and Elementary Particle Physics



Contents

1. The original stochastic model

2. Field theoretic formulation of the model

3. The Hwa-Kardar model and the Navier-Stokes equation only with
local contribution

4. Conclusion

1



The original stochastic model



Phenomenon of SOC

• Systems with self-organized criticality (SOC) [1] don’t have a
turning parameter and evolve to the critical state as a result of
their intrinsic dynamics.

• Systems with SOC are ubiquitous in Nature [2]!
• Examples are provided by biological systems [3], including
neural systems among them [4], social networks [5] and many
others.
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The Hwa-Kardar equation

• The Hwa-Kardar (HK) stochastic equation [6] is a
semi-phenomenological continuous model for the SOC
behaviour in a coarse-grained “running” sandpile.

• The system is manifestly anisotropic!
• The surface tilt is specified by a constant unit vector n:
x = x⊥ + nx∥, |n| = 1, (x⊥n) = 0.

The HK equation:

∂th = ν⊥0 ∂
2
⊥h+ ν∥0 ∂

2
∥h− ∂∥h2/2+ f, (1)

where h = h(t, x) is a deviation of the height of the sandpile from its average value;
ν⊥0 and ν∥0 are kinetic coefficients; the derivatives are

∂t =
∂

∂t
, ∂2⊥ = (∂⊥∂⊥) =

∂

∂x⊥i

∂

∂x⊥i
;

summation over repeated tensor indices is implied here and throughout the presentation; index i in x⊥i runs from 1 to (d − 1) with d
being the dimension.
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The Hwa-Kardar equation

The random noise f(x) has zero mean and prescribed Gaussian
statistics:

⟨f(x)f(x′)⟩f = C0 δ(t− t′) δ(d)(x− x′), (2)

where C0 > 0 is a positive amplitude and brackets ⟨. . . ⟩f denote
averaging over the Gaussian statistics of the random noise f.
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Let’s move on to the environment!
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The Navier-Stokes equation

The environment motion is described by the Navier-Stokes
stochastic differential equation for an isotropic incompressible
viscous fluid with an external random stirring force [7]:

∇tvi = ν0∂
2vi − ∂i℘+ ηi, (3)

where

∇t = ∂t + (v∂) (4)

is the Lagrangian (Galilean covariant) derivative, ℘ is the pressure and ν0 is the
kinematic viscosity coefficient.

Due to incompressibility of the fluid, the velocity field is transverse: (∂v) = 0, in the
sense that (kv) = 0 in the momentum representation.
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The Navier-Stokes equation

The random noise ηi(x) has a Gaussian probability distribution with
zero mean and the given correlation function

⟨ηi(t, x)ηj(t′, x′)⟩η = δ(t−t′)
∫
k>m

dk
(2π)dPij(k)dv(k)exp i(k(x− x′)) . (5)

dv(k) = D1 + D2k4−d−y.
Here the brackets ⟨. . . ⟩η stand for the averaging over the noise statistics, k ≡ |k| is
the wave number, Pij(k) = δij − kikj/k2 is the transverse projector, and D1,D2 > 0 are
positive amplitude factor.

The contribution with D1 is called local [7] and one with D2 − unlocal
[8].

The coupling of the fields h and v is introduced by the “minimal”
substitution [9]:

∂th→ ∇th ≡ ∂th+ (vvv · ∂)h.
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Field theoretic formulation of the
model



The action functional

The full stochastic problem (1)–(5) is equivalent (see, e.g., Sec. 5.3
in [10]) to the field theoretic model with the doubled set of fields
Φ = {h,h′, v, v′} and the action functional

S(Φ) = C0h′h′/2+ h′{−∇th+ ν∥0∂
2
∥h+ ν⊥0∂

2
⊥h− ∂∥h2/2}+

+D0v′2/2+ v′{−∇tv+ ν0∂
2v}. (6)

D0(k) = D10 + D20k4−d−y.

Relationship of amplitudes and coupling constants:

g0 =
C0

µεν
3/2
⊥0 ν

3/2
∥0

∼ Λε, w0 =
D10
µεν30

∼ Λε, u0 =
D20
µyν30

∼ Λy.
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Calculation of the UV divergence indices

The UV divergence index δΓ for a Green’s function Γ that involves Nh
fields h, Nh′ fields h′, etc., coincides with the total canonical
dimension dΓ of that function in the frequency-momentum
representation, taken at the logarithmic dimension [10]:

δΓ = dΓ|d=4 = (d+ 2− dhNh − dh′Nh′ − dvNv − dv′Nv′)|d=4 =
= 6− Nh − 3Nh′ − Nv − 3Nv′ .

The real divergence index δ′Γ is given by the expression:

δ′Γ = 6− Nh − 4Nh′ − Nv − 4Nv′ .

New coupling constants: x1,0 = ν∥0/ν0 and x2,0 = ν⊥0/ν0.
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The renormalized action functional

The divergence of the expression is transferred to the renormalization
constant Zi. The rest of the terms are finite.

SR(Φ) = wν̃3µϵ(vvv′ · vvv′)/2+ uν̃3µy(vvv′ · D̃2vvv′)/2+ gν3/2⊥ ν
3/2
∥ µϵh′h′/2+

+ h′{−∇th+ Z1ν∥∂2∥h+ Z2ν⊥∂2⊥h− ∂∥h2/2}+ (vvv′ · {−∇tvvv+ Z3ν̃∂2vvv}),
(7)

where D̃2 = k4−d−y.

The coupling constants and other parameters are related to their
counterparts as follows:

g0 = Zggµε, w0 = Zwwµε, x1,0 = Zx1x1, x2,0 = Zx2x2,
ν0 = νZν , ν∥0 = ν∥Zν∥ , ν⊥0 = ν⊥Zν⊥ .

Zv = Zv′ = Zh = Zh′ = 1, Zg = Z−3/2ν∥
Z−3/2ν⊥

, Zw = Zu = Z−3ν̃ ,

Zν∥ = Z1, Zν⊥ = Z2, Zν̃ = Z3.
(8)

Among them, the expression for Zg and the relations Zh = Zh′ = 1 are
one-loop. Decomposition parameters: ε = 4− d and y.
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Diagram technique

In the frequency-momentum (ω − k) representation, the bare propagators
for the model (6) are:

⟨hh′⟩0 = ⟨h′h⟩∗0 =
1

−iω + ϵ(k) , ⟨h′h′⟩0 = 0, ⟨hh⟩0 =
C0

ω2 + ϵ2(k) ,

⟨viv′j⟩0 = ⟨v′ivj⟩∗0 =
Pij(k)

−iω + ν̃0k2
, ⟨v′iv′j⟩0 = 0, ⟨vivj⟩0 =

D0Pij(k)
ω2 + ν̃20k4

,

(9)
where ϵ(k) = ν∥0k2∥ + ν⊥0k2⊥.

⟨hh′⟩0 = , ⟨hh⟩0 = ,

⟨viv′j⟩0 = , ⟨vivj⟩0 = .

The three vertices −h′∂∥h2/2, −h′(v∂)h and −v′(v∂)v correspond to the
vertex factors ikh′∥ , ikh

′

j and i(kv′n δsj + kv
′
s δnj), respectively.
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Available symmetries

Firstly, the counterterms (v∂)h′ and (v′∂)h vanish due to transversality of
the fields v and v′.

Secondly, there is passivity of the field h which means that the dynamic of
the field v is not affected by the field h. The full Green’s functions with
Nh = 0, Nh′ ≥ 1 (∀Nv, Nv′ ) and 1-irreducible Green’s functions with Nh ≥ 1,
Nh′ = 0 (∀Nv, Nv′ ) translate to the vanishing. Thus, the counterterms
(v′v)∂∥h and h(v′∂)h should be dropped.

Lastly, the action functional (6) is invariant with respect to the Galilean
transformation

v(t, x) → v(t, x+ u t)− u, v′(t, x) → v′(t, x+ u t),
h(t, x) → h(t, x+ u t), h′(t, x) → h′(t, x+ u t)

with a constant vector u.
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The Green functions

Table 1: Counterterms for the model (6)

№ Г δ Г δ
′
Г counterterm

1 ⟨h′⟩ 3 3 h′

2 ⟨vvv′⟩ 3 3 vvv′
3 ⟨vvv′vvv⟩ 2 1 vvv′∂2vvv
4 ⟨vvv′vvvvvv⟩ 1 0 vvv′(vvv · ∂)vvv
5 ⟨h′h⟩ 2 1 h∂2h′

6 ⟨h′vvv⟩ 2 1 h′∂vvv
7 ⟨h′hh⟩ 1 0 h2∂2h′

8 ⟨h′vvvh⟩ 1 0 h′(vvv · ∂)h

⟨hh′⟩1−ir = iω − ν∥p2∥Z1 − ν⊥p2⊥Z2 + + ,

⟨vvvvvv′⟩1−ir = iω − ν̃p2Z3 + .
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The Hwa-Kardar model and the
Navier-Stokes equation only with
local contribution



Local case

The Hwa-Kardar model with the motion environment modeled by the
Navier-Stokes equation with a local contribution (i.e. D0 = D10, and there is
no non-local contribution):

S(Φ) = C0h′h′/2+ h′{−∇th+ ν∥0∂
2
∥h+ ν⊥0∂

2
⊥h− ∂∥h2/2}+

+D0v′2/2+ v′{−∇tv+ ν0∂
2v}. (10)

The renormalized constants:

Z1 = 1− 1
ε

[
g 316 + wf1 (x1, x2)

]
, Z2 = 1− w

ε
f2 (x1, x2) , Z3 = 1− 1

ε

w
8 .

f1(x1, x2) ≡
1

2 x1
(√
1+ x1 +

√
1+ x2

)2
(
1+ 2

√
1+ x1
1+ x2

)
,

f2(x1, x2) ≡
1

6 x2
(√
1+ x1 +

√
1+ x2

)2
(
5+ 4

√
1+ x1
1+ x2

)
.
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Renormalization functions

Renormalization functions (anomalous dimensions γ and β-functions):

γQ = D̃µ ln ZQ, βr = D̃µr.

Here Q is a given quantity with renormalization constant ZQ and r is a
coupling constant. Differential operator D̃µ

D̃µ = µ∂µ|{g0,w0,x10,x20,ν0} (11)

emerges from the relation D̃µF = 0 for a physical quantity F that
encapsulates the fact that F cannot depend on renormalization mass µ
(which is not an observable).

γ1 = g 316 + wf1(x1, x2), γ2 = wf2(x1, x2), γ3 =
w
8 ,

βg = −g
[
ε− 3

2γ1 −
3
2γ2
]
, βw = −w [ε− 3γ3] ,

βx1 = −x1 [γ1 − γ3] , βx2 = −x2 [γ2 − γ3] .

(12)
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Fixed points

Taking into account that charges x1, x2 are positive, we find the following
fixed points:

FP 1 – a Gaussian (trivial) fixed point:

g∗ = 0; w∗ = 0; x∗1 ̸= 0; x∗2 ̸= 0; λi = {0, 0,−ε,−ε}.

FP 2 – a line of fixed points, parametrized by one of the coordinates (e.g.,
{g∗(x∗2 ),w∗(x∗2 ), x∗1 (x∗2 ), x∗2 }) and determined by the following equations:

w∗ = 8ϵ/3, f2(x∗1 , x∗2 ) = 1/8, g∗ =
128
9 ϵ

(
1
8 − f1(x∗1 , x∗2 )

)
,

λi = {0, ε, λ3, λ4}.

FP 2a – pure turbulence point:

w∗ = 8ϵ/3, g∗ = 0, x∗1 = x∗2 =

√
13− 1
2

, λi =

{
0, ε, 47+

√
13

162
ε,
13−

√
13

18
ε

}
.
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Fixed points

The eigenvalues λ3 and λ4 change along the line FP 2 and can also be parametrized.
Both eigenvalues are non-negative for the permitted values of x∗2 and positive values
of ε.

0.2 0.4 0.6 0.8 1.0 1.2
x2
✶

0.85

1.05

1.25

1.45

1.65

g✶, ϵ

0.2 0.4 0.6 0.8 1.0 1.2
x
2

✶

200

400

600

800

1000

x
1

✶

Figure 1: Dependence of charges g∗ и x∗1 from copling constant x∗2 .
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Figure 2: Eigenvalues λ3 and λ4 parameterized by x∗2 .
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Scaling regimes

The equation for critical IR scaling:(
−Dx−∆ωDt+dpgDg+dpwDw+dpx1Dx1+d

p
x2Dx2−nv∆v−nv′∆v′−nh∆h−nh′∆h′

)
WR = 0,

∆ω = 2− γ∗
ν̃ , ∆v = dpv +∆ωdωv + γ∗

v ,

where γ∗
ν̃ = γν̃(w∗, g∗, x∗1 , x∗2 ) and γ∗

v = γv(w∗, g∗, x∗1 , x∗2 ) and similarly for
∆h,∆v′ ,∆h′ .

Table 2: Fixed stable points of the model (10)

Fixed point Eigenvalues Critical dimension
∆ω ∆v, ∆h ∆v′ , ∆h′

g∗ = 0,w∗ = 0, ∀ x∗1 , x∗2 0, 0,−ϵ,−ϵ 2 1 d− 1
w∗ = 8ϵ/3... 0, ϵ, λ3(x∗2 ), λ4(x∗2 ) 2− ϵ/3 1− ϵ/3 d− 1+ ϵ/3
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Unstable points

Unstable points were found in other systems:
y1,2 = x−11,2 ; u1,2 = wx−11,2 ; u = wx−11 x−12 .

For example: g∗ = 32ε/9,w∗ = 0, y∗1 = 0, ∀y∗2 , λi = {0,−ε, 2ε/3, ε}.
This point belongs to the class of universality of the pure Hwa-Kardar
equation without turbulent motion of the medium.
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And some words about the common model
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The full model

This work is in progress.

γ1 = g 316 + (w+ u) f1(x1, x2), γ2 = (w+ u) f2(x1, x2), γ3 =
w
8 ,

βg = −g
[
ε− 3

2γ1 −
3
2γ2
]
, βw = −w [ε− 3γ3] ,

βx1 = −x1 [γ1 − γ3] , βx2 = −x2 [γ2 − γ3] ,

βu = −u [y− 3γ3] .

(13)
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Conclusion



Conclusion

• A field theory equivalent to the original stochastic problem was
constructed;

• After analyzing the canonical dimensions and counterterms, it
was found that it is renormalizable;

• For the particular model (the Hwa-Kardar and Navier-Stokes
equations with the local contribution in the correlator), the
(parametrized) coordinates of the fixed points and the
corresponding critical dimensions (in the one-loop
approximation or exactly) are found.

• For the particular model one of the regims is not implemented.
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The End.
Thank you for your attention!
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