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The original stochastic model



Phenomenon of SOC

- Systems with self-organized criticality (SOC) [1] don’t have a
turning parameter and evolve to the critical state as a result of
their intrinsic dynamics.

- Systems with SOC are ubiquitous in Nature [2]!

- Examples are provided by biological systems [3], including
neural systems among them [4], social networks [5] and many
others.



The Hwa-Kardar equation

- The Hwa-Kardar (HK) stochastic equation [6] is a
semi-phenomenological continuous model for the SOC
behaviour in a coarse-grained “running” sandpile.

- The system is manifestly anisotropic!

- The surface tilt is specified by a constant unit vector n:
X = X1 +nx), |n| =1, (xLn) = 0.

The HK equation:
8th = v10 01 h + v 8ih — 8 h?/2 + f, (1)

where h = h(t, x) is a deviation of the height of the sandpile from its average value;
v1o and y)o are kinetic coefficients; the derivatives are

0 o 0
2 5
8t=&: 8L:(8J_8J_):8 o
X1 OX1j
summation over repeated tensor indices is implied here and throughout the presentation; index i in x | ; runs from 1to (d — 1) with d

being the dimension



The Hwa-Kardar equation

The random noise f(x) has zero mean and prescribed Gaussian
statistics:

(FOOfX))r = Coo(t — ) 5D (x — X)), (2)

where Co > 0 is a positive amplitude and brackets (...)r denote
averaging over the Gaussian statistics of the random noise f.



Let’'s move on to the environment!



The Navier-Stokes equation

The environment motion is described by the Navier-Stokes
stochastic differential equation for an isotropic incompressible
viscous fluid with an external random stirring force [7]:

Vi = 10V, — Oip + 1, (3)
where

Vi =0 + (v0) (4)

is the Lagrangian (Galilean covariant) derivative, g is the pressure and vy is the
kinematic viscosity coefficient.

Due to incompressibility of the fluid, the velocity field is transverse: (8v) = 0, in the
sense that (kRv) = 0 in the momentum representation.



The Navier-Stokes equation

The random noise 7;(x) has a Gaussian probability distribution with
zero mean and the given correlation function

(ni(t, x)m(t', X))y = 6(t—t") /k>m (26’7:()(1P,-j(k) dv(R)expi(k(x —x")). (5)

dy(R) = Dy + DoR*™9Y,

Here the brackets (... ), stand for the averaging over the noise statistics, k = |R| is
the wave number, Pji(k) = & — k,fe//kz is the transverse projector, and D1,D, > 0 are
positive amplitude factor.

The contribution with D4 is called local [7] and one with D, — unlocal

[8].

The coupling of the fields h and v is introduced by the “minimal”
substitution [9]:
('9th — Vth = 8th + (V o 8)h



Field theoretic formulation of the
model



The action functional

The full stochastic problem (1)—(5) is equivalent (see, e.g., Sec. 5.3
in [10]) to the field theoretic model with the doubled set of fields
& = {h,h’,v,v'} and the action functional

S(®) = Coh'h' /2 + W {=Vih +vodih +vi0dih — 9 h*/2} +
+DgV'? /2 + V/{=VV + 1p0%V}. (6)
Do(R) = D1o + Dzof?l*_d_y.

Relationship of amplitudes and coupling constants:

C D D
go = 73/2 77~ A5, wo = 5103 ~ N, Uy = 7;03 ~ N.
HeEvg Yo K=Yy Y



Calculation of the UV divergence indices

The UV divergence index or for a Green’s function I that involves Ny
fields h, Ny, fields h’, etc., coincides with the total canonical
dimension dr of that function in the frequency-momentum
representation, taken at the logarithmic dimension [10]:

or = dr‘d:l; = (d +2 —dpNp — dp/Npr — dyNy, — dv’Nv’)‘d:A =
6 — Nj — 3Njy — Ny — 3N,

The real divergence index df is given by the expression:
6L =6 — Np — 4Np — Ny — 4N,

New coupling constants: xi o = vjo/v0 and X0 = v10/ 0.



The renormalized action functional

The divergence of the expression is transferred to the renormalization
constant Z;. The rest of the terms are finite.

Sr(®) = WP p(V' V') /2 + U (v - Dov') /2 + guY Pu P ph Y f2+
T h’{—Vth + Zw@ﬁh + ZzVJ_aih = E)Hh2/2} + (V/ c {—Vtv—i— 23582V}),
where D, = R*94.
The coupling constants and other parameters are related to their
counterparts as follows:

Jo = Zggus, Wo=ZyWu, Xio0=2gX1, Xz,0=2ZX2,

vo =VZy, Vjo=Vy, Vio=Vily, .

Zy=2y =2Zp=2Zp =1, ngﬁqﬁ,azazgi
ZVH :Z17 ZL/L :sz Z’I;:Z3'
Among them, the expression for Zg and the relations Z, = Z,» = 1are
one-loop. Decomposition parameters: e = 4 —d and y.

(8)



Diagram technique

In the frequency-momentum (w — R) representation, the bare propagators
for the model (6) are:

/ o T\ * _ 1 ! _ — CO
BJo =) = —osrepgy e =0 e = oty
. P (k) DoPji(k)
(Vivi)o = (Vivj)g = 77,-0}'; Al (Vivi)o =0, (vivj)o = T

(9)
where G(k) = VHoI?‘z‘ + VJ_Oki.
(hh')o = ———,  (hh)o= ———,
<VI-VJ{>0 = /\M7 <V,~Vj>0 = AAANNNNN,

The three vertices —h’9;h*/2, —h’(v@)h and —V/(vd)v correspond to the
vertex factors il?ﬂ', ikl and i(RY 65 + RY 8,), respectively.



Available symmetries

Firstly, the counterterms (vO)h’ and (v'@)h vanish due to transversality of
the fields vand v'.

Secondly, there is passivity of the field h which means that the dynamic of
the field v is not affected by the field h. The full Green’s functions with

Np =0, Np» > 1(V Ny, N,v») and 1-irreducible Green’s functions with N > 1,
Np = 0 (¥ Ny, N,s) translate to the vanishing. Thus, the counterterms
(V'v)9,h and h(v'@)h should be dropped.

Lastly, the action functional (6) is invariant with respect to the Galilean
transformation

v(t,x) — v(t,x+ut) —u, V(t,x) = V(t,x+ ut),
h(t,x) — h(t,x +ut), h'(t,x) — h'(t,x+ut)

with a constant vector u.

1



The Green functions

Table 1: Counterterms for the model (6)

Ne r or 6} counterterm
1 (h") 3 3 h’

2 V) 3 3 4

3 (v'v) 2 1 V' ov

4 (V'w) 1 0 V(v
5 (h’h) 2 1 ho?h’

6 (h'v) 2 1 h’ov

7 | (h’hh) 1 0 h?o%h’

8 (h’'vh) 1 0 h'(v-9)h

(hh')1ix = i = vpjjZr = v1P1Z2 + @ v AQF
<W/>1fir = w — 5[3223 + ’V\{:}% .



The Hwa-Kardar model and the
Navier-Stokes equation only with
local contribution



Local case

The Hwa-Kardar model with the motion environment modeled by the
Navier-Stokes equation with a local contribution (i.e. Dy = Dqg, and there is

no non-local contribution):
S(®) = Coh'h' /2 + W {=Vih +vodih + v10dih — 9 h?/2} +
+DoV'% /2 + V{—=VV + 150V} (10)

The renormalized constants:
Tw

1 3 w
Z1—1—g g,l6+Wf1(X17X2):|,Zz—1—€f2(X1,X2), Z3—1—€8 .

1 1+X1
ﬁ](X’],XQ)E 5 1+2 o
2x1 (VT+X1 + T+ %) T+X

1 1+X1
f(x,x) = 7 | D& .
6% (VT+x1 +VT+X) T+X



Renormalization functions

Renormalization functions (anomalous dimensions v and B-functions):
YaQ IDuh'lZQ, ﬂrI'D#I’.

Here Q is a given quantity with renormalization constant Zo and ris a
coupling constant. Differential operator 5H

Dy = 10l {go,wo 10,500,100} i

emerges from the relation 5HF = 0 for a physical quantity F that
encapsulates the fact that F cannot depend on renormalization mass p
(which is not an observable).
3 w
"= Q% +wWhi(x,%), 72 =whHhx,%), 1= 3’
3 3
Pg=—gle=sm—3m|, Pu=-Wle—=3nl
Bao =X [n—1], Bn=-X[r—mnl]

14



Fixed points

Taking into account that charges xi, x, are positive, we find the following
fixed points:

FP 1 - a Gaussian (trivial) fixed point:
g =0, w'=0;, x7#0; x3#0;, X\ ={0,0—e, —¢}.
FP 2 - a line of fixed points, parametrized by one of the coordinates (e.g.,

{g*(3), w*(x3), X7 (x3),x3}) and determined by the following equations:

9 8
A ={0,&, A3, ¢}

128 1
W, = 8e/3, Fo(,%5) = 1/8, g, = 22 ( —ﬁ(xr,x;)) ,

FP 2a - pure turbulence point:

We =8¢/3, g«=0, Xj=x5=

V13 =1 47+13 13 —v13
’ Ai = 0787 g, g .
2 162 18



Fixed points

The eigenvalues A3 and A\, change along the line FP 2 and can also be parametrized.
Both eigenvalues are non-negative for the permitted values of xJ and positive values

of e.
gu € x;
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Figure 1: Dependence of charges g. xi from copling constant x3.
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Figure 2: Eigenvalues A3 and A, parameterized by x5.
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Scaling regimes

The equation for critical IR scaling:
(—DX—Ath+ngg+d@DW+dQ Dy, +df, sz—nvAv—nV,Av/—nhAh—nh/Ah/)WR —o,
szz—’Y‘;a AV:d5+Awd$}+fY\j7

where v% = 5 (Wx, §«, X7, X5 ) and vy = w(Ws, g«, X7, X5) and similarly for
AhaAV/7AW .

Table 2: Fixed stable points of the model (10)

Critical dimension
A Ay, Ay Ay, Apy
g« = 0,W, = 0,VX7,X; 0,0, —e¢,—¢ 2 1 d—1
W, = 8¢/3... 0,6, (%), \a(X3) | 2—¢/3 | 1—€/3 | d—1+¢/3

Fixed point Eigenvalues




Unstable points

Unstable points were found in other systems:

Yi2 = X3 Unp =WXj5; U=wx;'x; .

For example: g. =32¢/9,w, = 0,y5 =0, W3, X\ ={0,—¢,2¢/3,¢}.
This point belongs to the class of universality of the pure Hwa-Kardar
equation without turbulent motion of the medium.



And some words about the common model



The full model

This work is in progress.

3 w
M=g3p + W+ u)fi(x,%2), 72 =W+ Uu)fa(x, %), 3= T

69 =-—g |:8 - %'71 - ;72:| ) 6W - _W[6 - 373]7 (']3)

B = —X1[n—m], Be=-—X[rn—ml]
Bu = _u[y_3'73]~
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Conclusion




Conclusion

- A field theory equivalent to the original stochastic problem was
constructed;

- After analyzing the canonical dimensions and counterterms, it
was found that it is renormalizable;

- For the particular model (the Hwa-Kardar and Navier-Stokes
equations with the local contribution in the correlator), the
(parametrized) coordinates of the fixed points and the
corresponding critical dimensions (in the one-loop
approximation or exactly) are found.

- For the particular model one of the regims is not implemented.

20



The End.
Thank you for your attention!
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