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Physics of Elementary Particles and Statistical Physics

In this talk we deal with two areas of physic: statistical physics and
high energy physics:

◮ Hwa-Kardar equation describing the growth of the surface;

◮ stochastic description of the system;

◮ functional integration and calculation of Feynman graphs;

◮ renormalization group (RG).

The problem under consideration is growth of the surface under
turbulent motion of the environment and mutual influence of the
isotropy of the system and anisotropy of the turbulent flow.
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Plan of the talk

The main steps (general scheme) are following:

◮ Stochastic formulation of Hwa-Kardar model;

◮ quantum field action and Feynman diagrams;

◮ divergences of the diagrams;

◮ renormalization, RG, RG flow and fixed points;

◮ critical dimensions at different fixed points.
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Hwa-Kardar model

T. Hwa and M. Kardar, Phys. Rev. Let., Vol.62, №16 (1989).

Stochastic equation (f is a random force)

∂th(t, x) = ν‖∂
2
‖h(t, x) + ν⊥∂

2
⊥h(t, x)−

1

2
∂‖h

2(t, x) + f (t, x).

Anisotropy of the system

x = x⊥ + nx‖, n⊥x⊥ (T̂ ≡ n).
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Hwa-Kardar model: turbulent mixing

Introducing of velocity field: anisotropic one

∂t → ∇t ≡ ∂t + v∂‖;

v(t, x) = nv(t, x⊥), ∂‖v = 0.

In the real life v obeys Navier-Stokes equation, but calculation
should be very complicated. Simplified model: v is a Gaussian
variable with given correlator function

〈
v(t, x)v(t ′, x ′)

〉
=

∫
dkdω

(2π)d
e ik(x−x ′)−iω(t−t′)Bv(ω, k),

Bv(ω, k) = 2πδ(k‖)B0
k
5−d−(ξ+η)
⊥

ω2 + [αν⊥k
2−η
⊥ ]2

.

arXiv:2005.04756
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Hwa-Kardar model: turbulent mixing

Introducing of velocity field: isotropic one

〈vi (t, x)vj (t
′, x′)〉 = δ(t − t ′)Dij(x− x

′),

Dij(r) = B0

∫

k>m

dk

(2π)d
1

kd+ξ
Pij(k) exp(ik · r).

arXiv:2009.00302
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Hwa-Kardar model: choise of the random force

Thermal noise

〈
f (x)f (x ′)

〉
= D0 δ(t − t ′)δ(d)(x− x

′), D0 > 0;

rapid correlations in both space and time.

Static noise (optional, do not consider here)

〈
f (x)f (x ′)

〉
= D0 δ

(d)(x− x
′), D0 > 0;

external average influence of the environment to the landscape is a
constant.
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Action functional
Graphs
Fixed points

Action functional: General rules

Theorem: any stochastic equation of the type

∂tφ(x) = U(x , φ) + f (x),
〈
f (x)f (x ′)

〉
= D(x , x ′),

where φ(x) = φ(t, x) is a random field, U(x , φ) is a t-local functional
depending on the fields and their derivatives, f (x) is a random force,
is equivalent to quantum field model of the double set of fields
φ̃ = {φ, φ′} and action functional

S [ϕ] =
1

2
ϕ′Dϕ′

︸ ︷︷ ︸
noise term

+ ϕ′ [−∂tϕ+ U]︸ ︷︷ ︸
dynamics

,

integration over t and x implied.
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Action functional: General rules

What does it mean:

◮ statistical average is equivalent to functional integration with
weight expS [φ];

◮ classical random field → quantum field;

◮ we may use all techniques from quantum field theory:
Feynman graphs, renormalization group, operator product
expansion, etc.
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Actions functional

Quantum field action:

S(Φ) =
1

2
h′D0h

′ + h′(−∇th + ν‖0∂
2
‖h + ν⊥0

∂2
⊥h −

1

2
∂‖h

2) + Sv .

All integrations are implied:

h′D0h
′ ≡ D0

∫
dt

∫
ddx h′(t, x)h′(t, x).
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Feynman rules and divergent functions

According to general rules both models contain three propagators

〈
hh′

〉
0
= , 〈hh〉0 = , 〈vv〉0 =

and two vertices

−
1

2
h′∂‖h

2 = h2∂‖′h
′ = ; −h′(v∂‖)h = h(v∂‖)h

′ = ,

The propagators are

〈
hh′

〉
0
=

1

−iω + ǫ(k)
, 〈hh〉0 =

D0

ω2 + ǫ2(k)
; ǫ(k) ≡ ν‖0k

2
‖+ν⊥0

k2⊥.

Logarithmic dimension is d = 4 and the only divergent Green
function is 〈h′h〉.
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Dimensions and scales

The key difference between anisotropic velocity ensemble

v(t, x) = nv(t, x⊥)

and isotropic one (under consideration)

〈vi (t, x)vj(t
′, x′)〉 = δ(t − t ′)Dij(x− x

′)

is possibility/impossibility to introduxe two independent momentum
scales.

In first case any quantity F is described by three canonical
dimensions

[F ] ∼ [T ]−dω

F [L‖]
−d

‖
F [L⊥]

−d⊥
F ,

in second case only by two:

[F ] ∼ [T ]−dω

F [L]−dk
F .
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Couplings and diagrams

This fact drastically changes RG analysis: we have one more
dimensionless quantity, i.e., one more “coupling constant”

u0 = ν‖0/ν⊥0.

All together three couplings are

D0 = g0(ν‖0ν⊥0
)3/2, B0 = w0ν‖0ν

2
⊥0
, u0 = ν‖0/ν⊥0.

Answers for the graphs are

= −
3

8
B0p

2m
−ξ

ξ
;

= −
3

16

D0p
2
‖

ν
1
2

‖ ν
3
2
⊥

m−ε

ε
.
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Renormalization constants Z and β-functions

The renormalization constants Z are

Zν‖ = 1−
3

8u

x

ξ
−

3

16

g

ε
,

Zν⊥ = 1−
3

8

x

ξ
, where x = uw .

The β-functions are

βg = g

(
−ε+

9

32
g +

9

16

x

u
+

9

16
x

)
,

βx = x

(
−ξ +

3

8
x

)
,

βu = u

(
−

3

16
g −

3

8

x

u
+

3

8
x

)
.
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Fixed points and scaling regimes

Four fixed points depending on the parameters ξ and η
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Critical dimensions: Fixed point FP2

The equation of critical scaling is a combination of equations of
canonical scalilng with RG equation taken at fixed point.

(
Dk‖ +Dk⊥ +∆ωDω − dk

G −∆ωd
ω
G − γ∗G

)
GR = 0,

where ∆ω = 2− γ∗ν⊥ . The critical dimension ∆F of a quantity F

reads
∆F = dk

F +∆ωd
ω
F + γ∗F .

Usually this step is very straightforward, and for the fixed point
FP2 they are

∆h = 1− ξ, ∆v = 1− ξ, ∆h′ = 3− ε+ ξ, ∆ω = 2− ξ.
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Critical dimensions: Fixed points FP3 and FP4

The points FP3 and FP4 has the coordinate α∗ = 1/u∗ = 0. Direct
substitution of the coordinates g∗, x∗, α∗ into γν⊥ gives us trivial
answer: γ∗ν⊥ = 0 and, consequently, ∆F = dk

F + 2dω
F are simply

canonical dimensions.

To obtain nontrivial corections we should expand βα!
(
Dk‖ +Dk⊥ +∆ωDω − λ∗Dα − dk

G −∆ωd
ω
G − γ∗G

)
GR = 0,

where λ = ∂βα/∂α at α = 0 and λ∗ denotes λ(g∗, x∗).

This trick allows us to determine nontrivial one-loop corrections to
canonical dimensions at fixed points FP3 and FP4 and, moreover,
reproduce well-known one-loop answers for pure Hwa-kardar model
[Phys. Rev. Lett. 62, 1813 (1989); Phys. Rev. A 45, 7002 (1992)],
which corresponds in our terminology to fixed point FP3.

N.M. Gulitskiy at al. Effects of turbulent environment on self-organized critical behavior 17 / 22



Stochastic equation
Quantum field theory

Action functional
Graphs
Fixed points

Critical dimensions: Fixed point FP3

For point FP3 general solution of the set of canonical equations and
RG equation is an arbitrary function of three independent variables

z1 =
ω

ν⊥k
2
⊥

, z2 =
k‖

k⊥
, and z3 = α

(
k⊥

µ

)2ε/3

.

Additional symmetry means that [F ] ∼ [T ]−dω

F [L‖]
−d

‖
F [L⊥]

−d⊥
F .

The variable z1 satisfies this requirement, variables z2 and z3 do

not, so we should construct z0 = z2z
−1/2
3 which has the needed

canonical dimensions and is the second solution

z0 =
k‖

k
∆‖

⊥ α℘
µε/3 with ℘ =

3

2ε

(
∆‖ − 1

)
, where ∆‖ = 1+ε/3.
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Dimensional transmutation

The ratio u of the two diffusivity coefficients ν‖ and ν⊥ acquires a
nontrivial canonical dimension.

z0 =
k‖

k
∆‖

⊥ α℘
µε/3 :

this regime corresponds to the scaling behavior where the
coordinates x‖ and x⊥ are simultaneously rescaled with nontrivial
exponent ∆‖ 6= 1 while the IR irrelevant parameters are kept fixed.

The model obtains new canonical symmetry that corresponds to
independent canonical dimensions d‖ and d⊥.
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Critical dimensions: Fixed point FP4

For point FP4 general solution is an arbitrary function of three
independent variables

ẑ1 =
ω

ν⊥k
2
⊥

(
k⊥

µ

)ξ

, ẑ2 =
k‖

k⊥
, ẑ3 = α

(
k⊥

µ

)2ε/3−2ξ

.

Any special case like can be obtained by combining ẑ1, ẑ2 and ẑ3,
but to perform it we need additional information about dependence
of scaling function on these variables.
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Conclusion

We applied methods of quantum field theory (functional integration,
calculation of Feynman graphs and renormalization group) to the
Hwa-Kardar model which describes the profile of a surface.

◮ The key point is the possibility to reformulate initial stochastic
problem into some quantum field theory.

◮ We coupled isotropic velocity ensemble with anisotropic initial
stochastic equation. As a consequence, one more coupling
constant and corresponding β-function should be considered.

◮ As a result we should expand β-function to obtain nontrivial
corrections to critical dimensions.

◮ For more detailes see Universe 6, 145 (2020).
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Thank you for your attention!
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