

Magnon spectrum of skyrmion crystals in stereographic projection approach

Dmitry N. Aristov

PNPI NRC «Kurchatov Institute», St.Petersburg State University

Collaboration: V.E. Timofeev

10.10.2022 MQFT-2022

Plan of the talk

- Skyrmions, skyrmion crystal, minimal model, known results
- Stereographic projection, Ansatz for skyrmion crystal
- Energy and Lagrangian, equations of motion
- Spectrum, its evolution with magnetic field
- Magnon bands topology, Berry curvature, Chern numbers
- Conclusions and outlook

skyrmion crystals

0 T

helical magnet Fe0.5Co0.5Si

theory

experiment TEM

Yu et al., Nature (2010)

50 mT

Minimal continuum model, 2D

 $\mathscr{E} = \frac{1}{2} C \partial_{\mu} S_i \partial_{\mu} S_i - D \epsilon_{\mu i j} S_i \partial_{\mu} S_j + B(1 - S_3)$

Magnetic field in units $D^2/C = B/b$

$$\mathscr{E} = \frac{1}{2} \partial_{\mu} S_i \partial_{\mu} S_i - \{ \epsilon_{\mu i j} S_i \partial_{\mu} S_j \} + k$$

Phase diagram at T = 0: Simple helix 0 < b < 0.25Skyrmion phase 0.25 < b < 0.8Uniform ferromagnet b > 0.8

- Length in units of l = C/D (helix pitch),

Magnon bands in SkX and topology

- Schütte, Garst, Phys.Rev. B (2014)
- Roldán-Molina, Núñez, Fernández-Rossier, New J. Phys. (2016)
- M.Garst in «The 2020 skyrmionics roadmap» J. Phys. D: Appl. Phys. (2020)
- Diaz, Hirosawa, Klinovaja, Loss, Phys. Rev. Research (2020)
 - Two-step procedure

 - 1) Equilibrium local magnetization direction (Monte-Carlo?) 2) Boson representation of spins in local frame
 - Stereographic projection approach : Timofeev, Aristov, Phys.Rev. B (2022)

Stereograph

$$S^{1} + iS^{2} = \frac{2f}{1 + f\bar{f}}, \quad S^{3} = \frac{1 - f\bar{f}}{1 + f\bar{f}}$$

$$(z = x + iy, \bar{z} = x - iy)$$

Topological charge:
$$Q = \frac{1}{4\pi} \int d^2 \mathbf{r} \ \frac{4(\partial_z f \partial_{\bar{z}} \bar{f} - \partial_z \bar{f} \partial_{\bar{z}} f)}{(1 + f\bar{f})^2}$$

phic projection

$$L = \int d^2 \mathbf{r} \left(\mathcal{T} - \mathcal{E} \right) \qquad \qquad \mathcal{T}[f]$$

$$\mathscr{E} = \frac{4(\partial_z f \partial_{\bar{z}} \bar{f} + \partial_z \bar{f} \partial_{\bar{z}} f)}{(1 + f\bar{f})^2} + \begin{cases} \frac{2i(\bar{f}^2 \partial_{\bar{z}} f)}{(1 + f\bar{f})^2} \end{cases}$$

Variation: $\delta L/\delta f = 0 \Rightarrow$ $2f\partial_z \bar{f}\partial_{\bar{z}} \bar{f} - (1 + f\bar{f})\partial_z \partial_{\bar{z}} \bar{f} - i\{\bar{f}\partial_{\bar{z}} \bar{f} + f\partial_z \bar{f}\} + \frac{1}{4}b\bar{f}(1 + f\bar{f}) = 0$

See also: Metlov, PRB (2013)

Energy and Lagrangian $=\frac{i\ \bar{f}\partial_t f - f\partial_t \bar{f}}{2\ 1 + f\bar{f}}$ $\frac{\partial_{\bar{z}}f + \partial_{\bar{z}}\bar{f} - \partial_{z}f - f^{2}\partial_{z}\bar{f})}{(1 + f\bar{f})^{2}} \left\{ \begin{array}{c} + \frac{2bf\bar{f}}{1 + f\bar{f}} \end{array} \right\}$

Any (anti)holomorphic $f \leftarrow Belavin, Polyakov (1975): D = B = 0$ $2f\partial_{z}\bar{f}\partial_{\bar{z}}\bar{f} - (1+f\bar{f})\partial_{z}\partial_{\bar{z}}\bar{f} = 0$

Ansatz for skyrmion crystal

Belavin, Polyakov: $f = \sum z_j / (\bar{z} - Z_j)$ size z_j , position Z_j

Now $D \neq 0, B \neq 0$

$$f_{SkX}(a, z_0) = \sum_{n,m} f_1(\mathbf{r} - n\mathbf{a}_1 - m\mathbf{a}_2)$$
$$f_1 = \frac{i z_0 \kappa(z\bar{z}/z_0^2)}{\bar{z}}$$

Timofeev, Sorokin, Aristov, Towards an effective theory of skyrmion crystals, JETP Letters (2019) Timofeev, Sorokin, Aristov, Triple helix versus skyrmion lattice ..., PRB (2021)

Ansatz for skyrmion crystal

Timofeev, Sorokin, Aristov, Towards an effective theory of skyrmion crystals, JETP Letters (2019) Timofeev, Sorokin, Aristov, Triple helix versus skyrmion lattice ..., PRB (2021)

Semiclassical method

$f(t, z, \bar{z}) = f_0(z, \bar{z}) + \delta f(t, z, \bar{z})$ $\mathscr{L}[f_0 + \delta f] = \mathscr{L}[f_0] + \delta f \mathscr{L}_1[f_0] + \delta f \mathscr{L}_1[f_0]$ Overall translation $\mathbf{R}(t) = \ll \text{Zero mod}$ $f(\mathbf{r}) = f_0 + (1 + f_0 \bar{f}_0) \psi(\mathbf{r} - \mathbf{R}(t))$ $\mathscr{L} = \frac{1}{2}(\bar{\psi}, \psi)$

$$+\frac{1}{2}\delta f \delta f \mathscr{L}_{2}[f_{0}] + \dots$$
de» Linear spin-wave theory

$$\left(-i\begin{pmatrix}\partial_t & 0\\ 0 & -\partial_t\end{pmatrix} - \hat{\mathscr{H}}\right)\begin{pmatrix}\psi\\\bar{\psi}\end{pmatrix}$$

$$\begin{aligned} \hat{\mathscr{H}} &= \begin{pmatrix} (-i\nabla + \mathbf{A})^2 + U & V \\ V^* & (i\nabla + \mathbf{A})^2 + U \end{pmatrix} \\ U &= -4 \frac{\partial_z f \partial_{\bar{z}} \bar{f} + \partial_z \bar{f} \partial_{\bar{z}} f}{(1 + f\bar{f})^2} + b \frac{1 - f\bar{f}}{1 + f\bar{f}} + \left\{ \frac{2i(f^2 \partial_z \bar{f} + \partial_z f - \partial_{\bar{z}} \bar{f} - \bar{f}^2 \partial_{\bar{z}} f + 2if\bar{f})}{(1 + f\bar{f})^2} \right\} \\ V &= 8 \frac{\partial_z f \partial_{\bar{z}} f (1 - 2f\bar{f}) + f(1 + f\bar{f}) \partial_{\bar{z}} \partial_{\bar{z}} f}{(1 + f\bar{f})^2} - \left\{ \frac{4i(3f^2 \partial_z f - \partial_{\bar{z}} f(1 - 2f\bar{f}))}{(1 + f\bar{f})^2} \right\} - b \frac{2f^2}{1 + f\bar{f}} \end{aligned}$$

$$A_{x} = \frac{if\partial_{x}\bar{f} - i\bar{f}\partial_{x}f}{1 + f\bar{f}} + \left\{\frac{4\operatorname{Re}f}{1 + f\bar{f}}\right\}$$

Gauge vector potential

Equations of motion ogoliubov-de Gennes" Any *f* providing extremum to the action

> Bogoliubov spinor = 0 $\epsilon_n \sigma_3 - \mathcal{H}$ V_{n} ,

Spectrum: evolution with B

Spectrum: tight-binding fit

 $(a)^{2.5}$

 t_0

Two sets of bands:

i) flat bands, topologically trivial, fast evolution with *B*

ii) tight-binding form, topologically non-trivial, steady with *B*

 $\hat{h} = \sum_{i} t_0 c_i^{\dagger} c_i + \sum_{\langle i,j \rangle} t_1 c_j^{\dagger} c_i + \sum_{\langle \langle i,j \rangle} t_2 c_j^{\dagger} c_i$

 $(b)_{0.02}^{0.03}$

0.01

0.00

-0.01

-0.02

-0.03

-0.04

Spectrum: types of deformation

* Bogoliubov u-v spinors, most weight in the upper (u) component

- * Bloch function strongly varying in the unit cell
- * behavior at centers of the skyrmions, $\psi \sim \exp i m \phi$

Deformations of skyrmions:

- *m*=0 counterclockwise rotation
- *m*=1 breathing mode
- *m*=2 clockwise rotation, «zero mode»
- *m*=3 elliptical deformation
- *m*=4 triangular deformation, etc.

 $\Psi_{n\mathbf{k}} = e^{i\mathbf{k}\mathbf{r}}\mathcal{V}_{n\mathbf{k}}(\mathbf{r})$ Bloch state of *n*th band. (assuming it is a smooth function of **k**) $\mathscr{A}_{n,\mu}(\mathbf{k}) = -\langle \mathscr{V}_{n\mathbf{k}} | i\partial_{\mu} | \mathscr{V}_{n\mathbf{k}} \rangle$ Berry connection $\Omega_{n,\mu\nu}(\mathbf{k}) = \partial_{\mu}\mathscr{A}_{n,\nu}(\mathbf{k}) - \partial_{\nu}\mathscr{A}_{n,\mu}(\mathbf{k})$ Berry curvature $C_n = \frac{1}{2\pi} \int_{\mathbf{R7}} \Omega_{n,12}(\mathbf{k}) \, d\mathbf{k}$ Chern number

Magnon bands topology **Berry curvature, Chern numbers**

Link-variable method Fukui, Hatsugai, Suzuki, JPSJ (2005)

Magnon bands topology

Clearly separated bands for b = 0.52

Flat bands => zero Berry curvature in B.z.

Non-flat bands => non-zero Berry curvature. However Chern number may be zero, always non-negative !!

Berry curvature: smooth background + peaks around Γ , K

Influence of higher-energy bands

Neighboring bands

Conclusions and outlook

- Stereographic projection: unified approach to spin dynamics in SkX • Other types of ordering (square lattice), interaction (uniaxial anisotropy)
- Spin susceptibilities
- Melting of Skyrmion crystal
- Thermal Hall effect
- Topological magnon edge states

Melting of Skyrmion crystal

NATURE NANOTECHNOLOGY | VOL 15 | SEPTEMBER 2020 | 761-767

Melting of a skyrmion lattice to a skyrmion liquid via a hexatic phase

Ping Huang^[]^{1,2,3,7}^{|∞}, Thomas Schönenberger^{2,7}, Marco Cantoni⁴, Lukas Heinen^[]⁵, Arnaud Magrez⁶, Achim Rosch⁵, Fabrizio Carbone³ and Henrik M. Rønnow⁰²[∞]

VOLUME 66, NUMBER 21

$(b \ge 0.6)$

FIG. 2. Two-dimensional structure factor at the magnetic fields H_B indicated (see text).

PHYSICAL REVIEW LETTERS

Hexatic-to-Liquid Melting Transition in Two-Dimensional Magnetic-Bubble Lattices

R. Seshadri and R. M. Westervelt

Department of Physics and Division of Applied Sciences, Harvard University, Cambridge, Massachusetts 02138

27 MAY 1991