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skyrmion crystals

(several tens of nanometres) can be regarded as a magnetically 2D
system, in which the direction of q is confined within the plane
because the sample thickness is less than the helical wavelength;
therefore, various features should appear that are missing in bulk
samples. In the context of the skyrmion, the thin film has the advant-
age that the conical state is not stabilized when the magnetic field is
perpendicular to the plane23. Therefore, it is expected that the SkX can
be stabilized much more easily, and even at T 5 0, in a thin film of
helical magnet.

In this Letter, we report the real-space observation of the forma-
tion of the SkX in a thin film of B20-type Fe0.5Co0.5Si, the thickness of
which is less than the helical wavelength, using Lorentz TEM28 with a
high spatial resolution. The quantitative evaluation of the magnetic
components is achieved by combining the Lorentz TEM observation
with a magnetic transport-of-intensity equation (TIE) calculation
(Supplementary Information).

We first discuss the two prototypical topological spin textures
observed for the (001) thin film of Fe0.5Co0.5Si. The Monte Carlo
simulation (Supplementary Information) for the discretized version
of the Hamiltonian in equation (1) predicts that the proper screw
(Fig. 1a) changes to the 2D skyrmion lattice (Fig. 1b) when a perpen-
dicular external magnetic field is applied at low temperature and when
the thickness of the thin film is reduced to close to or less than the
helical wavelength. The Lorentz TEM observation of the zero-field
state below the magnetic transition temperature (,40 K) clearly
reveals the stripy pattern (Fig. 1d) of the lateral component of the
magnetization, with a period of 90 nm, as previously reported18; this
indicates the proper-screw spin propagating in the [100] or [010]
direction. When a magnetic field (50 mT) was applied normal to the
plate, a 2D skyrmion lattice like that predicted by the simulation
(Fig. 1b) was observed as a real-space image (Fig. 1e) by means of
Lorentz TEM. The hexagonal lattice is a periodic array of swirling spin
textures (a magnified view is shown in Fig. 1f) and the lattice spacing is
of the same order as the stripe period, ,90 nm. Each skyrmion has the
Dzyaloshinskii–Moriya interaction energy gain, and the regions
between them have the magnetic field energy gain. Therefore, the
closest-packed hexagonal lattice of the skyrmion has both energy
gains, and forms at a magnetic field strength intermediate between
two critical values, each of which is of order a2/J in units of energy. We

note that the anticlockwise rotating spins in each spin structure reflect
the sign of the Dzyaloshinskii–Moriya interaction of this helical mag-
net. Although Lorentz TEM cannot specify the direction of the mag-
netization normal to the plate, the spins in the background (where the
black colouring indicates zero lateral component) should point
upwards and the spins in the black cores of the ‘particles’ should point
downwards; this is inferred from comparison with the simulation of
the skyrmion and is also in accord with there being a larger upward
component along the direction of the magnetic field. The situation is
similar to the magnetic flux in a superconductor29, in which the spins
are parallel to the magnetic field in the core of each vortex.

Keeping this transformation between the two distinct spin textures
(helical and skyrmion) in mind, let us go into detail about their field
and temperature dependences. First, we consider the isothermal vari-
ation of the spin texture as the magnetic field applied normal to the
(001) film is increased in intensity. The magnetic domain configura-
tion at zero field is shown in Fig. 2a. In analogy to Bragg reflections
observed in neutron scattering22, two peaks were found in the cor-
responding fast Fourier transform (FFT) pattern (Fig. 2e), confirm-
ing that the helical axis is along the [100] direction. In the real-space
image, however, knife-edge dislocations (such as that marked by an
arrowhead in Fig. 2a) are often seen in the helical spin state, as
pointed out in ref. 18. When a weak external magnetic field, of
20 mT, was applied normal to the thin film, the hexagonally arranged
skyrmions (marked by a hexagon in Fig. 2b) started to appear as the
spin stripes began to fragment. The coexistence of the stripe domain
and skyrmions is also seen in the corresponding FFT pattern (Fig. 2f);
the two main peaks rotate slightly away from the [100] axis, and two
other broad peaks and a weak halo appear. With further increase of
the magnetic field to 50 mT (Fig. 2c), stripe domains were completely
replaced by hexagonally ordered skyrmions. Such a 2D skyrmion
lattice structure develops over the whole region of the (001) sample,
except for the areas containing magnetic defects (Supplementary
Information). A lattice dislocation was also observed in the SkX, as
indicated by a white arrowhead in Fig. 2c. The corresponding FFT
(Fig. 2g) shows the six peaks associated with the hexagonal SkX
structure. The SkX structure changes to a ferromagnetic structure
at a higher magnetic field, for example 80 mT (Fig. 2d, h), rendering
no magnetic contrast in the lateral component.
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Figure 1 | Topological spin textures in the helical magnet Fe0.5Co0.5Si.
a, b, Helical (a) and skyrmion (b) structures predicted by Monte Carlo
simulation. c, Schematic of the spin configuration in a skyrmion. d–f, The
experimentally observed real-space images of the spin texture, represented
by the lateral magnetization distribution as obtained by TIE analysis of the

Lorentz TEM data: helical structure at zero magnetic field (d), the skyrmion
crystal (SkX) structure for a weak magnetic field (50 mT) applied normal to
the thin plate (e) and a magnified view of e (f). The colour map and white
arrows represent the magnetization direction at each point.
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Minimal continuum model, 2D

ℰ = 1
2 C∂μSi∂μSi − DϵμijSi∂μSj + B(1 − S3)

ℰ = 1
2 ∂μSi∂μSi − {ϵμijSi∂μSj} + b(1 − S3)

Phase diagram at  :  
Simple helix    
Skyrmion phase   
Uniform ferromagnet    

T = 0
0 < b < 0.25

0.25 < b < 0.8
b > 0.8

Length in units of    (helix pitch),  
Magnetic field in units   

l = C/D
D2/C = B/b

SkX

CSL

Honeycomb

Kagome

DTH

0.0 0.2 0.4 0.6 0.8
-0.5

-0.4

-0.3

-0.2

-0.1

0.0

Timofeev et al., PRB (2021)



Schütte, Garst,   Phys.Rev. B (2014)

Dıaz, Hirosawa, Klinovaja, Loss, Phys. Rev. Research (2020)

Roldán-Molina,  Núñez,  Fernández-Rossier,   New J. Phys.  (2016)  

M.Garst in «The 2020 skyrmionics roadmap» J. Phys. D: Appl. Phys.  (2020)

Magnon bands in SkX and topology

1) Equilibrium local magnetization direction (Monte-Carlo?) 
2) Boson representation of spins in local frame

Two-step procedure 

Stereographic projection approach : 
Timofeev, Aristov,   Phys.Rev. B (2022)



Stereographic projection

S1 + iS2 =
2f

1 + ff̄
, S3 =

1 − ff̄
1 + ff̄

 

 

S = (0,0,1) ↔ f = 0

S = (0,0, − 1) ↔ f = ∞

Wikipedia  

Topological charge: 

(z = x + iy, z̄ = x − iy)

Q =
1

4π ∫ d2r
4(∂z f∂z̄ f̄ − ∂z f̄∂z̄ f )

(1 + ff̄ )2



Energy and Lagrangian

ℰ =
4(∂z f∂z̄ f̄ + ∂z f̄∂z̄ f )

(1 + ff̄ )2
+ {

2i( f̄ 2∂z̄ f + ∂z̄ f̄ − ∂z f − f2∂z f̄ )
(1 + ff̄ )2 } +

2bff̄
1 + ff̄

𝒯[ f ] =
i
2

f̄∂t f − f∂t f̄
1 + ff̄

L = ∫ d2r (𝒯 − ℰ)

Variation:     
     

δL/δf = 0 ⇒
2f∂z f̄∂z̄ f̄ − (1 + ff̄ )∂z∂z̄ f̄ − i{f̄∂z̄ f̄ + f∂z f̄}+ 1

4 bf̄(1 + ff̄ ) = 0

Belavin,Polyakov (1975):     
     

D = B = 0
2f∂z f̄∂z̄ f̄ − (1 + ff̄ )∂z∂z̄ f̄ = 0

Any (anti)holomorphic f

See also:  Metlov, PRB (2013) 



Ansatz for skyrmion crystal
Belavin, Polyakov:    

           size , position 

f = ∑ zj /(z̄ − Zj)

zj Zj

Timofeev,  Sorokin,  Aristov, Towards an effective theory of skyrmion crystals,  JETP Letters (2019)

Timofeev,  Sorokin,  Aristov,  Triple helix versus skyrmion lattice …,  PRB (2021)

Now D ≠ 0, B ≠ 0

fSkX(a, z0) = ∑
n,m

f1(r − na1 − ma2)

	B
 	C


f1 =
i z0 κ(zz̄/z2

0)
z̄



Ansatz for skyrmion crystal

f1 =
i z0 κ(zz̄/z2

0)
z̄

, κ(r2) ≃ exp(−r2)

Timofeev,  Sorokin,  Aristov, Towards an effective theory of skyrmion crystals,  JETP Letters (2019)

Timofeev,  Sorokin,  Aristov,  Triple helix versus skyrmion lattice …,  PRB (2021)

z0

a



Semiclassical method
f(t, z, z̄) = f0(z, z̄) + δf(t, z, z̄)

ℒ[ f0 + δf ] = ℒ[ f0] + δf ℒ1[ f0]+
1
2 δf δf ℒ2[ f0] + …

f(r) = f0 + (1 + f0 f̄0) ψ(r − R(t))

ℒ =
1
2

(ψ̄, ψ) (−i (∂t 0
0 −∂t) − ℋ̂) (ψ

ψ̄)

Overall translation  = «Zero mode»R(t) Linear spin-wave theory



Equations of motion

ℋ̂ = ((−i∇ + A)2 + U V
V* (i∇ + A)2 + U)

U = − 4
∂z f∂z̄ f̄ + ∂z f̄∂z̄ f

(1 + ff̄ )2
+ b

1 − ff̄
1 + ff̄

+ {
2i( f2∂z f̄ + ∂z f − ∂z̄ f̄ − f̄ 2∂z̄ f + 2iff̄ )

(1 + ff̄ )2 }
V = 8

∂z f∂z̄ f(1 − 2ff̄ ) + f(1 + ff̄ )∂z∂z̄ f
(1 + ff̄ )2

− {
4i(3f2∂z f − ∂z̄ f(1 − 2ff̄ ))

(1 + ff̄ )2 } − b
2f2

1 + ff̄

Ax =
if∂x f̄ − if̄∂x f

1 + ff̄
+ { 4 Ref

1 + ff̄ } (ϵn σ3 − ℋ̂)(un
vn) = 0

``Bogoliubov-de Gennes’’

Gauge vector potential

Any f providing extremum  
to the action

Bogoliubov spinor



	B
 	C


Spectrum: evolution with B



Spectrum:   tight-binding fit

Two sets of bands:  
i) flat bands, topologically trivial,  
fast evolution with B 
ii) tight-binding form, topologically non-trivial, 
steady with B

ĥ = ∑
i

t0 c†
i ci + ∑

⟨i,j⟩

t1 c†
j ci + ∑

⟨⟨i,j⟩⟩

t2 c†
j ci



Spectrum: types of deformation 

* Bogoliubov u-v spinors,  
most weight in the upper (u) component  
* Bloch function strongly varying in the unit cell 
* behavior at centers of the skyrmions,  ψ ∼ exp imϕ

Deformations of skyrmions: 
m=0   counterclockwise rotation  
m=1   breathing mode  
m=2   clockwise rotation, «zero mode» 
m=3   elliptical deformation  
m=4   triangular deformation, etc.



Magnon bands topology
Berry curvature, Chern numbers

Bloch state of nth band.                           

( assuming it is a smooth function of k )  

Berry connection                  

Berry curvature              

Chern number                          

Ψnk = eikr𝒱nk(r)

𝒜n,μ(k) = − ⟨𝒱nk | i∂μ |𝒱nk⟩

Ωn,μν(k) = ∂μ𝒜n,ν(k) − ∂ν𝒜n,μ(k)

Cn =
1

2π ∫BZ
Ωn,12(k) dk

Link-variable method
Fukui, Hatsugai, Suzuki,  JPSJ  (2005)



Magnon bands topology
Clearly separated bands for b = 0.52 

Flat bands => zero Berry curvature in B.z. 

Non-flat bands => non-zero Berry curvature.  
However Chern number may be zero,  
always non-negative !!

Berry curvature:  
smooth background + peaks around , K Γ

Influence of higher-energy bands Neighboring bands



Conclusions and outlook

• Stereographic projection: unified approach to spin dynamics in SkX  

• Other types of ordering (square lattice), interaction (uniaxial anisotropy) 

• Spin susceptibilities  

• Melting of Skyrmion crystal  

• Thermal Hall effect  

• Topological magnon edge states  



Thank you ! 



Melting of Skyrmion crystal

V O L U M E 6 6 , N U M B E R U P H Y S I C A L R E V I E W L E T T E R S 27 M A Y 1991 

Hexatic-to-Liquid Melting Transition in Two-Dimensional Magnetic-Bubble Lattices 
R. Seshadri and R. M. Westervelt 

Department of Physics and Division of Applied Sciences, Harvard University, 
Cambridge, Massachusetts 02138 

(Received 17 January 1991) 

We report detailed observations of a continuous hexatic-to-liquid melting transition in two-
dimensional magnetic-bubble lattices in magnetic garnet films using digital-imaging techniques. Topo-
logical defects, diffraction patterns, and translational and orientational correlation functions show that a 
second-order melting transition occurs via the formation of progressively larger transient defect clusters. 

PACS numbers: 64.70.-p, 05.70.Fh, 61.50.Ks, 75.70.Kw 

The nature of the melting transition in 2D systems has 
generated considerable interest and controversy.1,2 

Building on the ideas of Kosterlitz and Thouless,3 

Halperin and Nelson (HN) have suggested that this 
melting is a second-order two-stage transition driven by 
the dissociation of dislocation pairs and then disclina-
tions, producing a hexatic phase between the solid and 
liquid characterized by unpaired dislocations, algebrai-
cally decaying orientational order, and exponentially de-
caying translational order.4 Young independently stud-
ied the dissociation of dislocation pairs.5 Recently, 
Chudnovsky (C) has suggested that the solid-to-hexatic 
transition is absent in 2D systems with microscopic dis-
order, and a hexatic glass rather than a crystalline solid 
is the most ordered state.6 Other theories propose that 
melting in 2D systems is a first-order transition.7 Nu-
merical simulations and experiments on polystyrene col-
loids,8 hard spheres,9 liquid crystals, electrons on He, 
and physisorbed noble gases have probed this transition.x 

A hexatic vortex glass has been seen in disordered high-
TV superconductors.10 

In this Letter, we describe experimental observations 
of a continuous hexatic-to-liquid melting transition near 
equilibrium in 2D magnetic-bubble lattices, driven by to-
pological defects in agreement with the H N theory. At 
higher densities away from the transition we find a C 
hexatic glass6 produced by microscopic disorder. The 
bubbles can be easily observed and followed in time and 
space. Polystyrene colloids8 share this advantage and 
display the behavior predicted by H N theory, but with 
additional vacancies. 

These experiments were performed at room tempera-
ture on a thin magnetic film of bismuth-substituted iron 
garnet;x ! details of the sample characteristics and experi-
mental setup are given elsewhere.12,13 The magnetiza-
tion is perpendicular to the film and aligned either with 
or opposed to an applied perpendicular magnetic field 
/ /# . Magnetic bubbles are cylindrical domains of re-
versed magnetization with radii determined by material 
parameters and the local field.14 The bubble radius (3.3 
jum) does not change appreciably over the field range 
used in this experiment,15 although the bubble density 
varies by an order of magnitude; the radius is compara-

ble to the film thickness (7.8 jum) and much smaller than 
the bubble separation (17 to 47 pm). Bubbles interact 
via a purely repulsive dipolar interaction (1 / r 3 ) ; the di-
pole moment changes little with HB and is uniform from 
bubble to bubble.15 

Polycrystalline bubble lattices with typical crystallite 
sizes of — 12 000 bubbles were produced from a sea of 
bubbles using superimposed ac and dc magnetic fields.16 

All data were taken with a 6.6-Oe-p.p. 40-Hz ac field 
which causes a slight breathing motion of the bubble ra-
dius. Microscopic roughness in the garnet produces a ji-
tter in bubble position which is both spatially and tem-
porally uncorrelated with the jitter of other bubbles, 
simulating thermal motion.17 The bubble density p was 
decreased from —4000 to —500 m m - 2 through the 
melting transition by incrementing HB from 85 to 95 Oe 
in small steps. Isolated bubbles collapse at a well defined 
field, 103 Oe in the absence of an ac field for this film. 
Each increment in HB results in the collapse of a few 
bubbles distributed uniformly over the lattice, creating 
vacancies that relax into dislocations. After each step 
the lattice was annealed for 30 min to allow defects to 
equilibrate. 

Bubble lattices were visualized in an optical micro-
scope using polarized light. Grey-scale images of area 
1078x808 jum2 were recorded using computer video 
techniques for each step in HB after annealing. The 
bubble centers were determined from these images to 
within ± 1 pixel ( ± 1 . 7 pm). Voronoi constructions18 

were used to isolate topological defects, to determine the 
lattice constant a, and to obtain the bond information. 
The maximum number of bubbles in the processed im-
ages was —3000, for which a was —10 pixels (17 pm). 
Our observations were made on a single crystallite. The 
grain boundary minimizes external stress and aids in the 
equilibration of defects. Dislocations of any orientation 
can reach any point in the lattice by glide from the grain 
boundary; climb was observed but is not necessary to 
achieve equilibrium. We measured the diffusion con-
stant for glide by following dislocations across four 
sequential video frames. 

Figure 1 shows sections of images for a typical melting 
transition. The lattice in Fig. 1 (a) has long-range orien-
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FIG. 1. Melting transition vs field HB. The dots are bubble 
centers; the open square, solid squares, solid circles, and open 
circles are fourfold, fivefold, sevenfold, and eightfold coordinat-
ed disclinations in the hexagonal lattice. 

tational order, and very low defect concentration and 
mobility. Here dislocations glide across —10% of the 
field of view in the annealing time (D = 0.002a 2/sec). In 
Fig. 1 (a) the bubble array is a C hexatic glass6 for which 
translational order is limited by microscopic roughness, 
not by dislocations (see below). As the bubble density is 
lowered we observe a H N hexatic4 shown in Fig. 1(b), 
characterized by a gas of dislocations which limits 
translational order: Here dislocations glide across 
— 35% of the field of view in the annealing time (D 
=0.018tf 2/sec). Although the lattice is still far from 
equilibrium, the dislocation gas closely resembles the 
hexatic described by equilibrium H N theory, because 
dislocations are created uniformly and can equilibrate lo-
cally. The H N hexatic in Fig. 1(c) for lower bubble 
density has diffusion constants similar to Fig. 1(b). In 
Fig. 1 (c) clustering of dislocations begins to occur, and 
the clusters evolve continuously in time. Virtual pairs 
(twisted bonds), vacancies, and interstitials appear as 
two to four dislocation clusters. In contrast to nuclei in 
first-order transitions, these transient clusters do not sta-
bilize and grow upon attaining a critical size. In Fig. 
1 (d) a dramatic increase in the dislocation concentration 
starts to occur. Isolated dislocations become less com-
mon and cluster sizes are larger. Here dislocations glide 
across — 110% of the field of view in the annealing time 
(D =0.069(2 2/sec). Clusters constantly rearrange and 
defects go into and out of existence. Time-resolved im-
ages show thermal excitation of virtual pairs, and dislo-

vmausE0^m^% 

^ %*-*#" -Jp* 
Mf0^M^^ip0 

Kc)93.1 Oe 
W4i^':- — ^ : 

:^'^*^^ 

m**&. 

FIG. 2. Two-dimensional structure factor at the magnetic 
fields HB indicated (see text). 

cation regrouping, creation, and annihilation on time 
scales — 15 sec, indicating that the hexatic is near equi-
librium. By criteria given below, the liquid transition 
occurs near Figs. 1(d) and 1(e). In Fig. 1(e) larger de-
fect clusters form which begin to join each other and 
percolate across the system: The cluster size is almost 
equal to the cluster spacing. Finally, in Fig. 1(f) the 
clusters span the system, dislocations dissociate into dis-
clinations, orientational order diminishes, and the system 
is a liquid. At these low densities bubbles with four and 
eight nearest neighbors are often present, as shown in 
Fig. 1(f). The liquid is characterized by the absence of 
isolated clusters. 

The melting transition is illustrated in a series of 2D 
structure factors shown in Figs. 2 ( a ) -2 (d ) , computed 
from the bubble centers using a discrete Fourier trans-
form. The C hexatic glass in Fig. 2(a) shows a sharp 
sixfold symmetric diffraction pattern [see Fig. 1(a)]. 
The H N hexatic in Fig. 2(b) has well defined but some-
what smeared peaks. Figure 2(c) displays the diffraction 
pattern just above the hexatic-to-liquid transition [see 
Fig. 1 (e)]: Here the six first Bragg peaks almost form a 
ring. In Fig. 2(d) the pattern is that of a liquid. 

Figure 3 shows the evolution through the melting tran-
sition of the orientational correlation function G e ( r ) , the 
two-particle distribution function g(r), and the angular 
average S(k) of the structure factor, determined from 
the bubble centers. For the C hexatic glass in Fig. 3, 
trace a, ( / e ( r ) remains near 1 even for large bubble sep-
arations — 40a. This is the signature for extended orien-
tational order. In traces b-f, C / e^ ) decays very slowly 
with separation r. The orientational order is quasi long 
range, and corresponds to the H N hexatic shown in Figs. 
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The Mermin–Wagner theorem states that long wavelength 
density fluctuations will destroy long-range translational 
orders in infinitely large two-dimensional (2D) lattices at any 

finite temperature1,2. Thus, for a long time the assumption has been 
that there is no transition in a 2D system with continuous sym-
metry to an ordered phase at any temperature T > 0 K. The intro-
duction of topological defects provides further insights into both 
the order of the ground state and its phase transition on heating in 
two dimensions3. Topologically ordered states that contain a small 
density of pairwise topological defects can be distinguished from 
disordered states by determining overall physical properties such 
as finite elastic moduli, which vanish in the latter3,4. Upon thermal 
excitations, the eventual dissociation of bound topological defect 
pairs in 2D systems results in the Berezinskii–Kosterlitz–Thouless 
phase transitions3,5–7.

This theory has also been applied to 2D crystalline solids3,8–10, 
and it predicts that these solids melt through two separate continu-
ous phase transitions due to the sequential proliferation of two types 
of topological defect, dislocations and disclinations. In sharp con-
trast, a melting process in three dimensions is always a single-step, 
first-order phase transition. So far, all real-space investigations on 
the 2D melting process have been conducted on real-matter par-
ticles such as electrons11, molecules12,13 and especially colloids14–16.

Quasi-particles can also form 2D crystalline structures, and 
magnetic skyrmion lattices (SkLs) are one such example17–20. 
Skyrmions are localized twirling spin textures with non-trivial 
topology. More generally as countable soliton configurations 
embedded in continuous fields21,22 (for example, a ferromagnetic 
background), skyrmions are quasi-particles, and lattices formed 
by skyrmions may be essentially distinct from those formed by 
real-matter particles. For example, skyrmions can be created and 

destroyed by rare thermal fluctuations23, so the number of sky-
rmions is not a conserved quantity. The questions of whether and 
how a SkL melts thus need to be answered.

Instead of viewing skyrmions as quasi-particles, an alternative 
picture of coherent superposition of spin helices has been adopted 
to explain the stability of the SkL phase17,24. In this scheme, a SkL 
is similar to a standing wave configuration in a continuous field, 
whose stability is based on the phase coherence of the helical spin 
modulations constituting the SkL. The two pictures thus give rise to 
fundamentally different order-to-disorder behaviours. In the par-
ticle scenario, individual skyrmions should persist throughout the 
whole melting process until an atomic-level magnetic phase transi-
tion happens (for example, transforming to the paramagnetic phase 
or to the spin polarized state), with the long-range orders evolving 
accordingly25. Alternatively, there could be a first-order transition 
from the SkL phase to a phase without skyrmions.

If a SkL melts as a condensed particle ensemble, one may fur-
ther ask whether such a 2D quasiparticle system exhibits non-trivial 
phase behaviours. One possibility could be the aforementioned 
topological-defect-induced 2D melting phase transition proposed 
by the Kosterlitz, Thouless, Halperin, Nelson and Young (KTHNY) 
melting theory3,8–10. In this scenario, the quasi-long-range trans-
lational order (due to the long wavelength fluctuations) and the 
long-range orientational order of a SkL will evolve separately due 
to the respective disassociation of dislocation pairs and disclination 
pairs. It hence would lead to a phase evolution from the solid phase, 
through a unique intermediate phase, the hexatic phase, and finally 
to the isotropic liquid phase, yet the most recent Monte Carlo simu-
lation results26 find an unexpected single-step melting transition.

Here, by using real-space cryo-Lorentz transmission elec-
tron microscopy (LTEM), we realize the controllable melting of 

Melting of a skyrmion lattice to a skyrmion liquid 
via a hexatic phase
Ping Huang! !1,2,3,7 ✉, Thomas Schönenberger2,7, Marco Cantoni4, Lukas Heinen! !5, Arnaud Magrez6, 
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Extended Data Fig. 8 | Summary of properties of skyrmion ensembles in different phases. Real-space configurations, topology, Fourier transform, 
translational orders and orientational orders are summarized for the solid, the hexatic and the liquid phases respectively.
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The Mermin–Wagner theorem states that long wavelength 
density fluctuations will destroy long-range translational 
orders in infinitely large two-dimensional (2D) lattices at any 

finite temperature1,2. Thus, for a long time the assumption has been 
that there is no transition in a 2D system with continuous sym-
metry to an ordered phase at any temperature T > 0 K. The intro-
duction of topological defects provides further insights into both 
the order of the ground state and its phase transition on heating in 
two dimensions3. Topologically ordered states that contain a small 
density of pairwise topological defects can be distinguished from 
disordered states by determining overall physical properties such 
as finite elastic moduli, which vanish in the latter3,4. Upon thermal 
excitations, the eventual dissociation of bound topological defect 
pairs in 2D systems results in the Berezinskii–Kosterlitz–Thouless 
phase transitions3,5–7.

This theory has also been applied to 2D crystalline solids3,8–10, 
and it predicts that these solids melt through two separate continu-
ous phase transitions due to the sequential proliferation of two types 
of topological defect, dislocations and disclinations. In sharp con-
trast, a melting process in three dimensions is always a single-step, 
first-order phase transition. So far, all real-space investigations on 
the 2D melting process have been conducted on real-matter par-
ticles such as electrons11, molecules12,13 and especially colloids14–16.

Quasi-particles can also form 2D crystalline structures, and 
magnetic skyrmion lattices (SkLs) are one such example17–20. 
Skyrmions are localized twirling spin textures with non-trivial 
topology. More generally as countable soliton configurations 
embedded in continuous fields21,22 (for example, a ferromagnetic 
background), skyrmions are quasi-particles, and lattices formed 
by skyrmions may be essentially distinct from those formed by 
real-matter particles. For example, skyrmions can be created and 

destroyed by rare thermal fluctuations23, so the number of sky-
rmions is not a conserved quantity. The questions of whether and 
how a SkL melts thus need to be answered.

Instead of viewing skyrmions as quasi-particles, an alternative 
picture of coherent superposition of spin helices has been adopted 
to explain the stability of the SkL phase17,24. In this scheme, a SkL 
is similar to a standing wave configuration in a continuous field, 
whose stability is based on the phase coherence of the helical spin 
modulations constituting the SkL. The two pictures thus give rise to 
fundamentally different order-to-disorder behaviours. In the par-
ticle scenario, individual skyrmions should persist throughout the 
whole melting process until an atomic-level magnetic phase transi-
tion happens (for example, transforming to the paramagnetic phase 
or to the spin polarized state), with the long-range orders evolving 
accordingly25. Alternatively, there could be a first-order transition 
from the SkL phase to a phase without skyrmions.

If a SkL melts as a condensed particle ensemble, one may fur-
ther ask whether such a 2D quasiparticle system exhibits non-trivial 
phase behaviours. One possibility could be the aforementioned 
topological-defect-induced 2D melting phase transition proposed 
by the Kosterlitz, Thouless, Halperin, Nelson and Young (KTHNY) 
melting theory3,8–10. In this scenario, the quasi-long-range trans-
lational order (due to the long wavelength fluctuations) and the 
long-range orientational order of a SkL will evolve separately due 
to the respective disassociation of dislocation pairs and disclination 
pairs. It hence would lead to a phase evolution from the solid phase, 
through a unique intermediate phase, the hexatic phase, and finally 
to the isotropic liquid phase, yet the most recent Monte Carlo simu-
lation results26 find an unexpected single-step melting transition.

Here, by using real-space cryo-Lorentz transmission elec-
tron microscopy (LTEM), we realize the controllable melting of 
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