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Particle creation Tree-level case Loop corrections Discussion

Quantization of nonstationary quantum systems

• In nonstationary quantum systems, the notions of particle and vacuum state
cannot be fixed once and forever

• If we assume that the system is stationary in the asymptotic past and future
but nonstationary at intermediate times, we can introduce two alternative
decompositions for the quantized field:

ϕ̂(t, x) =

{∑
n â

in
n f in

n (t, x) + H.c.∑
n â

out
n fout

n (t, x) + H.c.

Here, mode functions f in
n and fout

n diagonalize the free Hamiltonian in the
asymptotic past and future, respectively

• In general, these mode functions do not coincide, determine different vacua,
and are related via the Bogoliubov transformations:

fout
n =

∑
k

[
α∗
knf

in
k − βkn

(
f in
k

)∗]
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Particle creation Tree-level case Loop corrections Discussion

Particle creation in nonstationary quantum systems

• The creation and annihilation operators in the asymptotic past and future are
also related via a similar transformation:

âout
n =

∑
k

[
αknâ

in
k + β∗

kn

(
âin
k

)†]
• So, the energy level density and correlated pair density in the asymptotic past

and future are different, thus indicating a change in the quantum state:

nout
pq = ⟨0|

(
âout
p )†âout

q |0⟩ =
∑
n

βnpβ
∗
nq

+
∑
n,k

[
α∗
npαkq + β∗

nqβkp

]
nin
nk +

∑
n,k

βnpαkq κ
in
nk +

∑
n,k

α∗
npβ

∗
kq κ

in∗
nk ,

κout
pq = ⟨0|âout

p âout
q |0⟩ =

∑
n

αnpβ
∗
nq

+
∑
n,k

[
β∗
npαkq + β∗

nqαkp

]
nin
nk +

∑
n,k

αnpαkq κ
in
nk +

∑
n,k

β∗
npβ

∗
kq κ

in∗
nk .

• The diagonal part nout
pp has the meaning of the number of created particles
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Particle creation Tree-level case Loop corrections Discussion

Loop corrections

• Usually, these phenomena are discussed in the tree-level approximation,
where all effects are contained in the Bogoliubov coefficients

• Nevertheless, real-world systems are usually nonlinear, i.e., interacting
• In such systems, the initial values of nin

pq and κin
pq receive loop corrections

• Furthermore, in some systems, these loop corrections secularly grow and
become large even for minuscule couplings:

nin
pq ∼ λantbn , κin

pq ∼ λcntdn

• In this case, the correct values of nout
pq and κout

pq are restored only after the
resummation of all loop corrections

• Recently, such a growth was observed in the dynamical Casimir effect
• However, the summation was not performed in the most interesting

resonant case, where quantum averages rapidly grow and can be measured
experimentally
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Particle creation Tree-level case Loop corrections Discussion

Tree-level case

• First of all, we consider the free case: the scalar dynamical Casimir effect in
a linear one-dimensional cavity with perfectly reflecting walls:(

∂2
t − ∂2

x

)
ϕ(t, x) = 0, ϕ[t, L(t)] = ϕ[t, R(t)] = 0

• We assume that the cavity is static in the asymptotic past and future but
resonant at intermediate times:

L(t) = 0, R(t) = Λ for t < 0 and t > T ,

L(t) = 0, R(t) = Λ

[
1 + ϵ sin

(
2πt

Λ

)]
for 0 < t < T

• The in-modes are sought in the following form:

f in
n (t, x) =

i√
4πn

[
e−iπnG(t+x) − e−iπnG(t−x)

]
where the function G solves the Moore’s equation:

G [t+R(t)]−G [t−R(t)] = 2 with i.c. G(z ≤ Λ) = z/Λ
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Solution to Moore’s equation

• At large evolution times, the solution to the Moore’s equation quickly
approaches a “staircase” profile1:

G(t) ≈ t

Λ
− 1

π
arctan

[1− ζ(t)] sin 2πt
Λ

[1 + ζ(t)] + [1− ζ(t)] cos 2πt
Λ

+O(ϵ),

where 1/ϵ ≪ t/Λ ≪ 1/ϵ2 and ζ(t) = e−2πϵt/Λ

• For practical purposes, in this interval, G(t) can be approximated by a
piecewise-linear function:

G(t) ≈


τ + 2δξ + δ, as − 1

2 ≤ ξ < −δ,

τ + 1
2 + 1−2δ+4δ2

2δ ξ, as − δ ≤ ξ < δ,

τ + 1 + 2δξ − δ, as δ ≤ ξ < 1
2 .

• Here, we parametrize t/Λ = τ + 1/2 + ξ, τ ∈ N, ξ ∈ [−1/2, 1/2), and
approximate the half-width of the n-th stair riser as δ = 1

π e
−2πϵτ

1J. Math. Phys. 34, 2742 (1993); Phys. Rev. A 59, 3049 (1999).
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Bogoliubov coefficients

• Using G(z), we straightforwardly calculate the Bogoliubov coefficients:

βnk

αnk

}
=

1

2

√
k

n

∫ t/Λ+1

t/Λ−1

e−iπnG(Λz)∓iπkzdz

• On one hand, we analytically calculate this integral for moderate
frequencies employing the approximate form of G(z):

βnk

αnk

}
≈ 1

π

1− (−1)nk

(−1)(k−1)/2

√
nk

(n± 2kδ)(k ± 2nδ)
,

for n, k ≪ 1/δ
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Bogoliubov coefficients

On the other hand, we numerically estimate the Bogoliubov coefficients and show
that they exponentially decay at high frequencies:

βnk

αnk

}
∼ e−(n+k)δ for n, k ≫ 1/δ
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Figure: Numerically calculated Bogoliubov coefficients αn7 (solid lines) and βn7 (dashed
lines) for δ = 1/1000π (blue), δ = 1/200π (red) and δ = 1/100π (green).
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Quantum averages

• Keeping in mind the behavior of the Bogoliubov coefficients and assuming
the vacuum initial state, we calculate the energy level density and correlated
pair density in the asymptotic future:

nout
pq ≈ κout

pq ≈ 2

π

1− (−1)pq

(−1)(p+q−2)/2

1
√
pq

ϵt

Λ
,

for p, q ≪ 1/δ and nout
pq ≈ κout

pq ≈ 0 otherwise
• In particular, this approximate identity reproduces the rate of particle creation

established 30 years ago:

d

dt
nout
p ≈ 2

π

1− (−1)p

p

ϵ

Λ
for p ≪ 1/δ,

which confirms the validity of used approximations
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Loop corrections and Schwinger-Keldysh technique

• Now, let us turn on a quartic interaction, i.e., consider the following
nonlinear generalization of the free model:(

∂2
t − ∂2

x

)
ϕ(t, x) = −λϕ3(t, x)

• In general, loop corrections to nin
pq and κin

pq are conveniently calculated in the
Schwinger-Keldysh diagram technique

• In our particular model, this technique contains two interaction vertices:

−iλ

∫ T

t0

dt

∫ R(t)

L(t)

dxϕ3
clϕq, −i

λ

4

∫ T

t0

dt

∫ R(t)

L(t)

dxϕclϕ
3
q,

• And three propagators:

G
K(eldysh)
12 = −i

〈
ϕcl(t1, x1)ϕcl(t2, x2)

〉
,

G
R(etarded)
12 = −i

〈
ϕcl(t1, x1)ϕq(t2, x2)

〉
,

G
A(dvanced)
12 = −i

〈
ϕq(t1, x1)ϕcl(t2, x2)

〉
,
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Propagators in the Schwinger-Keldysh technique

• The tree-level retarded propagators characterize the particle spectrum and
do not depend on the initial state:

iGR,free
12 = iGA,free

21 = θ(t1 − t2)
∑
n

(
f in
1,nf

in∗
2,n −H.c.

)
,

where we introduce the short notation f in
a,n = f in

n (ta, xa).
• The tree-level Keldysh propagator is determined by initial quantum

averages of interest to us:

iGK,free
12 =

∑
p,q

[(
δpq
2

+ nin
pq

)
f in
1,pf

in∗
2,q + κin

pqf
in
1,pf

in
2,q +H.c.

]
.

• Furthermore, propagators approximately preserve their tree-level form as

t1 + t2
2

≫ 1

λΛ
and

t1 + t2
2

≫ |t1 − t2|.

• This property allows us to extract the corrected quantum averages in the
interacting theory from the exact Keldysh propagator in the limit in question
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Estimate of the exact Keldysh propagator

• To estimate the loop resummed Keldysh propagator in the interacting model
with resonantly moving mirrors, we make four crucial observations

• First, we map the resonant mirror trajectories to stationary ones:

t+ x = G−1(τ + ξ), t− x = G−1(τ − ξ)

in all internal vertices of diagrams that describe loop corrections to the
Keldysh propagator, e.g.:

V = −iλ

∫ T

t0

dt

∫ R(t)

L(t)

dx f in
m(t, x)f in

n (t, x)f in
p (t, x)f in

q (t, x)

= −iλ

∫ τf

τ0

dτ

∫ 1

0

dξ
dG−1(τ − ξ)

dτ

dG−1(τ + ξ)

dτ
×

× e−iπ(m+n+p+q)τ sin(πmξ) sin(πnξ) sin(πpξ) sin(πqξ)

π2√mnpq
.
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Estimate of the exact Keldysh propagator

• Second, we expect that the leading contribution to the loop corrections come
from large evolution times: t/Λ = τ ≫ 1/ϵ

• Hence, we can approximate the function dG−1(z)/dz with a piecewise-linear
function close to a sum of Dirac delta functions

• Third, the exponential decay of the Bogoliubov coefficients imply that sums
over the virtual momenta are effectively cut off at mode numbers n ∼ 1/δs

• Keeping in mind this cutoff, we replace the approximate delta functions with
exact ones and reduce the vertex integrals to sums:

V ≈ −iλΛ2

τf∑
s=1/ϵ

gsmgsng
s
pg

s
q ,

where we introduce the notation for the “remnant” of the initial mode
f in
n (t, x):

f in
n (t, x) → gsn = −i

(−1)s√
πn

1− (−1)n

2
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Estimate of the exact Keldysh propagator

• Fourth, now, it is straightforward to see that diagrams containing internal
retarded/advanced propagators are approximately zero

• Indeed, the “remnants” of internal modes are purely imaginary, and their
product is purely real, so their combination f in

1,nf
in∗
2,n −H.c. ≈ 0

• Hence, we can consider only such loop diagrams where internal vertices are
connected by the Keldysh propagators alone

• There are four such diagrams, three of which are trivially absorbed into the
renormalized mass

Figure: Loop corrections to the Keldysh propagator that do not contain internal
retarded/advanced propagators. Solid lines denote the tree-level Keldysh propagators,
half-dashed lines denote the retarded/advanced propagators.
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Estimate of the exact quantum averages

• Keeping in mind these approximations, we obtain the leading loop correction
to initial quantum averages:

∆nin
pq ≈ ∆κin

pq ≈ 3

5π

1− (−1)pq

2
√
pq

(
λΛT

)2 (ϵT

Λ

)3

,

for p, q ≪ 1/δτf ∼ e2πϵT/Λ

• Finally, we determine the relative correction to the quantum averages nout
pq

and κout
pq , which are physically meaningful in the asymptotic future:

∆nout
pq

nout
pq

≈
∆κout

pq

κout
pq

≈ 12

5

(
λΛT

)2 (ϵT

Λ

)4

• So, loop contributions to the energy level density and correlated pair density
significantly exceed the tree-level expressions in the time interval
1/λΛ2 ≪ T/Λ ≪ 1/(λΛ2)2 and 1/ϵ ≪ T/Λ ≪ 1/ϵ2

14 / 15



Particle creation Tree-level case Loop corrections Discussion

Discussion and open questions

• We considered the nonlinear dynamical Casimir effect in a one-dimensional
cavity

• We calculated the leading loop corrections to the quantum averages (in
particular, the number of created particles) generated during the resonant
motion of cavity walls

• At large times, loop corrections significantly exceed the tree-level values of
quantum averages

• This result encourages a careful measurement of the large-time behavior of
quantum averages in the experimental implementations of the dynamical
Casimir effect

• It is interesting to extend this result to other types of the resonant motion
• In addition, the nonlinear dynamical Casimir effect is very similar to a light

interacting field in a rapidly expanding universe, so it would be promising to
study our calculations in light of this relation
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