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Quantization of nonstationary quantum systems

® In nonstationary quantum systems, the notions of particle and vacuum state
cannot be fixed once and forever

® |f we assume that the system is stationary in the asymptotic past and future
but nonstationary at intermediate times, we can introduce two alternative
decompositions for the quantized field:

[y, anfine) + He.
d)(tyl') - {Z gout Tc;ut(t,m) + H.c.

n - n

Here, mode functions fi* and f°u* diagonalize the free Hamiltonian in the
asymptotic past and future, respectively

® |n general, these mode functions do not coincide, determine different vacua,
and are related via the Bogoliubov transformations:

12 = 3 [ it = B ()]

k
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0e0

Particle creation in nonstationary quantum systems

® The creation and annihilation operators in the asymptotic past and future are
also related via a similar transformation:

i =Y [anntiy + Bt (a)]
k

® So, the energy level density and correlated pair density in the asymptotic past
and future are different, thus indicating a change in the quantum state:

= (016" a0) = 3 B

+ Z I:anpakq + ﬁnqﬁkp nnk + Z :Bnpakq Ki?k + Z a;pﬂ;q K;?l:a
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n

+ Z [/B:Lpakq + B:ankp] n}r?k + Z AnpQkq K‘}r?k + Z /B:LP/BZq K/;?I:

n,k n,k n,k

® The diagonal part nO“t has the meaning of the number of created particles
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Loop corrections

e Usually, these phenomena are discussed in the tree-level approximation,
where all effects are contained in the Bogoliubov coefficients

® Nevertheless, real-world systems are usually nonlinear, i.e., interacting
® |n such systems, the initial values of n y and /<; ; receive loop corrections

® Furthermore, in some systems, these Ioop correctlons secularly grow and
become large even for minuscule couplings:

in an 1bn in Cn 4dn
Mg ~ AP E, Kpy ~ At
® |n this case, the correct values of n"“t and Iiout are restored only after the
resummation of all loop correctlons

® Recently, such a growth was observed in the dynamical Casimir effect

® However, the summation was not performed in the most interesting
resonant case, where quantum averages rapidly grow and can be measured
experimentally
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Tree-level case
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Tree-level case

® First of all, we consider the free case: the scalar dynamical Casimir effect in
a linear one-dimensional cavity with perfectly reflecting walls:

(0F — 02) o(t, ) =0, o[t L(t)] = ¢[t, R(t)] = 0

® We assume that the cavity is static in the asymptotic past and future but
resonant at intermediate times:

L(t)=0, R(t)=A for t<Oandt>T,
2
L(t)=0, R({)=A {1 + esin <%t>] for 0<t<T
® The in-modes are sought in the following form:

M (t,x) =

|:e—i7'rnG(t+1:) _ e—iﬂnG(t—m):|

(3
varn
where the function G solves the Moore’s equation:

Glt+R(H)] - Gt—RM)] =2 withic. G(z<A)=z/A
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Tree-level case
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Solution to Moore's equation

® At large evolution times, the solution to the Moore's equation quickly
approaches a “staircase” profile!:

1 — ((t)] sin 2
G(t)%%—larctan [1 = ¢(B))sin

[1+¢()] + [1 = ¢(t)] cos 2 +0(9),
where 1/e < t/A < 1/€? and ((t) = e 2m<t/A

® For practical purposes, in this interval, G(t) can be approximated by a
piecewise-linear function:

T+25§+5 as — 3 < &< =6,
G(t) ~ Ly lo2bi®e 55 5 < €<,
T+1+26§ 5, as <E<i

® Here, we parametrize t/A=7+1/2+¢ 7€N,{€[-1/2,1/2), and
approximate the half-width of the n-th stair riser as § = %6_2“"

1J. Math. Phys. 34, 2742 (1993); Phys. Rev. A 59, 3049 (1999).
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Bogoliubov coefficients

® Using G(z), we straightforwardly calculate the Bogoliubov coefficients:

t/A+1
\/> / —zfrnG Az):Fmrkde
t/A—1

® On one hand, we analytically calculate this integral for moderate
frequencies employing the approximate form of G(z):

Bar | 11— (=1)" Vnk
T (=1)* =172 (n % 2k6) (k & 2nd)’

Ank

forn, k < 1/6

6/ 15



Tree-level case
00080

Bogoliubov coefficients

On the other hand, we numerically estimate the Bogoliubov coefficients and show
that they exponentially decay at high frequencies:

Bnk

} ~em RS for k> 1/
Ank
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Figure: Numerically calculated Bogoliubov coefficients au,7 (solid lines) and 3,7 (dashed
lines) for § = 1/10007 (blue), § = 1/2007 (red) and § = 1/1007 (green).
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Quantum averages

® Keeping in mind the behavior of the Bogoliubov coefficients and assuming
the vacuum initial state, we calculate the energy level density and correlated
pair density in the asymptotic future:

out out

2 1- (-1 1 e
pa = Fpa ¥ T ) era-D2 pg A

for p,g < 1/6 and nout /@Z}I‘t =~ 0 otherwise

® In particular, this approximate identity reproduces the rate of particle creation
established 30 years ago:

d g 21— (-1 c
ou - N 7 - f 1
a'r T r D AP <1/,

which confirms the validity of used approximations
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Loop corrections and Schwinger-Keldysh technique

® Now, let us turn on a quartic interaction, i.e., consider the following
nonlinear generalization of the free model:

(07 = 07) ot x) = —2¢*(t, )

® In general, loop corrections to npq and m y are conveniently calculated in the

Schwinger-Keldysh diagram techmque
® In our particular model, this technique contains two interaction vertices:

R(t) R(t)
o[ ar / by, —id / dt / dz $uid?,
to L

® And three propagators:
Gié(eldySh) = —i{¢a(ti, z1)0a(ts, x2)),
GRaerded) = — i(per(ts, m1)Pg(t2, 22)),
GA(dvanced) <¢q (th ml>¢cl(t27 .’L‘2>>,
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Propagators in the Schwinger-Keldysh technique

® The tree-level retarded propagators characterize the particle spectrum and
do not depend on the initial state:
GRfree_ GAfree_g(tl_tz)Z( in m:; HC)

1,nJ/2
n

where we introduce the short notation fi*, = fi(ta, zq).

® The tree-level Keldysh propagator is determined by initial quantum
averages of interest to us:

GK Jfree Z |:< 6pq + m)f fln* + Km f + Hec.

2
P.q
® Furthermore, propagators approximately preserve their tree-level form as

t1 +to 1 t1 +t2
— d
9 > A an

® This property allows us to extract the corrected quantum averages in the
interacting theory from the exact Keldysh propagator in the limit in question

> |t — tol.
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Estimate of the exact Keldysh propagator

® To estimate the loop resummed Keldysh propagator in the interacting model
with resonantly moving mirrors, we make four crucial observations

® First, we map the resonant mirror trajectories to stationary ones:
t+rx=G Y r+¢&), t—a2=G ' r-¢

in all internal vertices of diagrams that describe loop corrections to the
Keldysh propagator, e.g.:

TR0 . . .
V= —ix / dt /L R AT A AT
= —M/ / d¢ dG~H(r = §) dG~ (1 +§) y

dr

% e—wr (m+n+p+q)T Sll’l(ﬂ'mé‘) Sll’l(’]‘(”nf) (ﬂ—pg) SlH(’/Tqé-)

w2\ /mnpq
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Estimate of the exact Keldysh propagator

® Second, we expect that the leading contribution to the loop corrections come
from large evolution times: t/A =7 > 1/e

® Hence, we can approximate the function dG~!(z)/dz with a piecewise-linear
function close to a sum of Dirac delta functions

® Third, the exponential decay of the Bogoliubov coefficients imply that sums
over the virtual momenta are effectively cut off at mode numbers n ~ 1/4;

e Keeping in mind this cutoff, we replace the approximate delta functions with
exact ones and reduce the vertex integrals to sums:

Tf
Va —idA? ) grgngngs,

s=1/e

where we introduce the notation for the “remnant” of the initial mode

fin(t.o):
(11— (1"

TN 2

' (t,2) = g, = —i
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Estimate of the exact Keldysh propagator

® fourth, now, it is straightforward to see that diagrams containing internal

retarded/advanced propagators are approximately zero
® Indeed, the "remnants’ of internal modes are purely imaginary, and their
inx

product is purely real, so their combination fi", f3"* — H.c. = 0

® Hence, we can consider only such loop diagrams where internal vertices are
connected by the Keldysh propagators alone

® There are four such diagrams, three of which are trivially absorbed into the
renormalized mass

0 0 00 -6-

()

Figure: Loop corrections to the Keldysh propagator that do not contain internal
retarded /advanced propagators. Solid lines denote the tree-level Keldysh propagators,
half-dashed lines denote the retarded/advanced propagators.
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Estimate of the exact quantum averages

® Keeping in mind these approximations, we obtain the leading loop correction
to initial quantum averages:

in in 3 1_( 1);0 er
Anpqunpqz5—7T N ()\AT) <A> ,

for p,q < 1/8;, ~ e?m<T/A

® Finally, we determine the relative correction to the quantum averages n(’“t
and k%%, which are physically meaningful in the asymptotic future:

pq "’
Anout Aﬁout 12 T 4
-~ —t ~ —()\AT)2 <6—>
noy Kod 5 A

® So, loop contributions to the energy level density and correlated pair density
significantly exceed the tree-level expressions in the time interval
1/MM? < T/A < 1/(AA?)? and 1/e < T/A < 1/€?
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Discussion

Discussion and open questions

® We considered the nonlinear dynamical Casimir effect in a one-dimensional
cavity

® We calculated the leading loop corrections to the quantum averages (in
particular, the number of created particles) generated during the resonant
motion of cavity walls

® At large times, loop corrections significantly exceed the tree-level values of
quantum averages

® This result encourages a careful measurement of the large-time behavior of
quantum averages in the experimental implementations of the dynamical
Casimir effect

® |t is interesting to extend this result to other types of the resonant motion

® In addition, the nonlinear dynamical Casimir effect is very similar to a light
interacting field in a rapidly expanding universe, so it would be promising to
study our calculations in light of this relation
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