Dynamical Casimir effect in nonlinear resonant cavities based on arXiv:2209.10462

Dmitrii A. Trunin

Moscow Institute of Physics and Technology
VII International Conference "Models in Quantum Field Theory" October 10, 2022

Quantization of nonstationary quantum systems

- In nonstationary quantum systems, the notions of particle and vacuum state cannot be fixed once and forever
- If we assume that the system is stationary in the asymptotic past and future but nonstationary at intermediate times, we can introduce two alternative decompositions for the quantized field:

$$
\hat{\phi}(t, x)=\left\{\begin{array}{l}
\sum_{n} \hat{a}_{n}^{\text {in }} f_{n}^{\text {in }}(t, x)+\text { H.c. } \\
\sum_{n} \hat{a}_{n}^{\text {out }} f_{n}^{\text {out }}(t, x)+\text { H.c. }
\end{array}\right.
$$

Here, mode functions $f_{n}^{\text {in }}$ and $f_{n}^{\text {out }}$ diagonalize the free Hamiltonian in the asymptotic past and future, respectively

- In general, these mode functions do not coincide, determine different vacua, and are related via the Bogoliubov transformations:

$$
f_{n}^{\text {out }}=\sum_{k}\left[\alpha_{k n}^{*} f_{k}^{\text {in }}-\beta_{k n}\left(f_{k}^{\text {in }}\right)^{*}\right]
$$

Particle creation in nonstationary quantum systems

- The creation and annihilation operators in the asymptotic past and future are also related via a similar transformation:

$$
\hat{a}_{n}^{\text {out }}=\sum_{k}\left[\alpha_{k n} \hat{a}_{k}^{\text {in }}+\beta_{k n}^{*}\left(\hat{a}_{k}^{\text {in }}\right)^{\dagger}\right]
$$

- So, the energy level density and correlated pair density in the asymptotic past and future are different, thus indicating a change in the quantum state:

$$
\begin{aligned}
n_{p q}^{\mathrm{out}} & =\langle 0|\left(\hat{a}_{p}^{\mathrm{out}}\right)^{\dagger} \hat{a}_{q}^{\mathrm{out}}|0\rangle=\sum_{n} \beta_{n p} \beta_{n q}^{*} \\
& +\sum_{n, k}\left[\alpha_{n p}^{*} \alpha_{k q}+\beta_{n q}^{*} \beta_{k p}\right] n_{n k}^{\mathrm{in}}+\sum_{n, k} \beta_{n p} \alpha_{k q} \kappa_{n k}^{\mathrm{in}}+\sum_{n, k} \alpha_{n p}^{*} \beta_{k q}^{*} \kappa_{n k}^{\mathrm{in} *} \\
\kappa_{p q}^{\mathrm{out}} & =\langle 0| \hat{a}_{p}^{\mathrm{out}} \hat{a}_{q}^{\mathrm{out}}|0\rangle=\sum_{n} \alpha_{n p} \beta_{n q}^{*} \\
& +\sum_{n, k}\left[\beta_{n p}^{*} \alpha_{k q}+\beta_{n q}^{*} \alpha_{k p}\right] n_{n k}^{\mathrm{in}}+\sum_{n, k} \alpha_{n p} \alpha_{k q} \kappa_{n k}^{\mathrm{in}}+\sum_{n, k} \beta_{n p}^{*} \beta_{k q}^{*} \kappa_{n k}^{\mathrm{in} *}
\end{aligned}
$$

- The diagonal part $n_{p p}^{\text {out }}$ has the meaning of the number of created particles

Loop corrections

- Usually, these phenomena are discussed in the tree-level approximation, where all effects are contained in the Bogoliubov coefficients
- Nevertheless, real-world systems are usually nonlinear, i.e., interacting
- In such systems, the initial values of $n_{p q}^{\mathrm{in}}$ and $\kappa_{p q}^{\mathrm{in}}$ receive loop corrections
- Furthermore, in some systems, these loop corrections secularly grow and become large even for minuscule couplings:

$$
n_{p q}^{\mathrm{in}} \sim \lambda^{a_{n}} t^{b_{n}}, \quad \kappa_{p q}^{\mathrm{in}} \sim \lambda^{c_{n}} t^{d_{n}}
$$

- In this case, the correct values of $n_{p q}^{\text {out }}$ and $\kappa_{p q}^{\text {out }}$ are restored only after the resummation of all loop corrections
- Recently, such a growth was observed in the dynamical Casimir effect
- However, the summation was not performed in the most interesting resonant case, where quantum averages rapidly grow and can be measured experimentally

Tree-level case

- First of all, we consider the free case: the scalar dynamical Casimir effect in a linear one-dimensional cavity with perfectly reflecting walls:

$$
\left(\partial_{t}^{2}-\partial_{x}^{2}\right) \phi(t, x)=0, \quad \phi[t, L(t)]=\phi[t, R(t)]=0
$$

- We assume that the cavity is static in the asymptotic past and future but resonant at intermediate times:

$$
\begin{gathered}
L(t)=0, \quad R(t)=\Lambda \quad \text { for } \quad t<0 \text { and } t>T, \\
L(t)=0, \quad R(t)=\Lambda\left[1+\epsilon \sin \left(\frac{2 \pi t}{\Lambda}\right)\right] \quad \text { for } \quad 0<t<T
\end{gathered}
$$

- The in-modes are sought in the following form:

$$
f_{n}^{\text {in }}(t, x)=\frac{i}{\sqrt{4 \pi n}}\left[e^{-i \pi n G(t+x)}-e^{-i \pi n G(t-x)}\right]
$$

where the function G solves the Moore's equation:

$$
G[t+R(t)]-G[t-R(t)]=2 \quad \text { with i.c. } \quad G(z \leq \Lambda)=z / \Lambda
$$

Solution to Moore's equation

- At large evolution times, the solution to the Moore's equation quickly approaches a "staircase" profile ${ }^{1}$:

$$
G(t) \approx \frac{t}{\Lambda}-\frac{1}{\pi} \arctan \frac{[1-\zeta(t)] \sin \frac{2 \pi t}{\Lambda}}{[1+\zeta(t)]+[1-\zeta(t)] \cos \frac{2 \pi t}{\Lambda}}+\mathcal{O}(\epsilon)
$$

where $1 / \epsilon \ll t / \Lambda \ll 1 / \epsilon^{2}$ and $\zeta(t)=e^{-2 \pi \epsilon t / \Lambda}$

- For practical purposes, in this interval, $G(t)$ can be approximated by a piecewise-linear function:

$$
G(t) \approx \begin{cases}\tau+2 \delta \xi+\delta, & \text { as }-\frac{1}{2} \leq \xi<-\delta \\ \tau+\frac{1}{2}+\frac{1-2 \delta+4 \delta^{2}}{2 \delta} \xi, & \text { as }-\delta \leq \xi<\delta \\ \tau+1+2 \delta \xi-\delta, & \text { as } \delta \leq \xi<\frac{1}{2}\end{cases}
$$

- Here, we parametrize $t / \Lambda=\tau+1 / 2+\xi, \tau \in \mathbb{N}, \xi \in[-1 / 2,1 / 2)$, and approximate the half-width of the n-th stair riser as $\delta=\frac{1}{\pi} e^{-2 \pi \epsilon \tau}$
${ }^{1}$ J. Math. Phys. 34, 2742 (1993); Phys. Rev. A 59, 3049 (1999).

Bogoliubov coefficients

- Using $G(z)$, we straightforwardly calculate the Bogoliubov coefficients:

$$
\left.\begin{array}{l}
\beta_{n k} \\
\alpha_{n k}
\end{array}\right\}=\frac{1}{2} \sqrt{\frac{k}{n}} \int_{t / \Lambda-1}^{t / \Lambda+1} e^{-i \pi n G(\Lambda z) \mp i \pi k z} d z
$$

- On one hand, we analytically calculate this integral for moderate frequencies employing the approximate form of $G(z)$:

$$
\left.\begin{array}{l}
\beta_{n k} \\
\alpha_{n k}
\end{array}\right\} \approx \frac{1}{\pi} \frac{1-(-1)^{n k}}{(-1)^{(k-1) / 2}} \frac{\sqrt{n k}}{(n \pm 2 k \delta)(k \pm 2 n \delta)},
$$

for $n, k \ll 1 / \delta$

Bogoliubov coefficients

On the other hand, we numerically estimate the Bogoliubov coefficients and show that they exponentially decay at high frequencies:

$$
\left.\begin{array}{l}
\beta_{n k} \\
\alpha_{n k}
\end{array}\right\} \sim e^{-(n+k) \delta} \quad \text { for } \quad n, k \gg 1 / \delta
$$

Figure: Numerically calculated Bogoliubov coefficients $\alpha_{n 7}$ (solid lines) and $\beta_{n 7}$ (dashed lines) for $\delta=1 / 1000 \pi$ (blue), $\delta=1 / 200 \pi$ (red) and $\delta=1 / 100 \pi$ (green).

Quantum averages

- Keeping in mind the behavior of the Bogoliubov coefficients and assuming the vacuum initial state, we calculate the energy level density and correlated pair density in the asymptotic future:

$$
n_{p q}^{\mathrm{out}} \approx \kappa_{p q}^{\mathrm{out}} \approx \frac{2}{\pi} \frac{1-(-1)^{p q}}{(-1)^{(p+q-2) / 2}} \frac{1}{\sqrt{p q}} \frac{\epsilon t}{\Lambda}
$$

for $p, q \ll 1 / \delta$ and $n_{p q}^{\text {out }} \approx \kappa_{p q}^{\text {out }} \approx 0$ otherwise

- In particular, this approximate identity reproduces the rate of particle creation established 30 years ago:

$$
\frac{d}{d t} n_{p}^{\text {out }} \approx \frac{2}{\pi} \frac{1-(-1)^{p}}{p} \frac{\epsilon}{\Lambda} \quad \text { for } \quad p \ll 1 / \delta
$$

which confirms the validity of used approximations

Loop corrections and Schwinger-Keldysh technique

- Now, let us turn on a quartic interaction, i.e., consider the following nonlinear generalization of the free model:

$$
\left(\partial_{t}^{2}-\partial_{x}^{2}\right) \phi(t, x)=-\lambda \phi^{3}(t, x)
$$

- In general, loop corrections to $n_{p q}^{\mathrm{in}}$ and $\kappa_{p q}^{\mathrm{in}}$ are conveniently calculated in the Schwinger-Keldysh diagram technique
- In our particular model, this technique contains two interaction vertices:

$$
-i \lambda \int_{t_{0}}^{T} d t \int_{L(t)}^{R(t)} d x \phi_{c l}^{3} \phi_{q}, \quad-i \frac{\lambda}{4} \int_{t_{0}}^{T} d t \int_{L(t)}^{R(t)} d x \phi_{c l} \phi_{q}^{3},
$$

- And three propagators:

$$
\begin{aligned}
G_{12}^{\mathrm{K}(\mathrm{eldysh})} & =-i\left\langle\phi_{c l}\left(t_{1}, x_{1}\right) \phi_{c l}\left(t_{2}, x_{2}\right)\right\rangle \\
G_{12}^{\mathrm{R}(\text { etarded })} & =-i\left\langle\phi_{c l}\left(t_{1}, x_{1}\right) \phi_{q}\left(t_{2}, x_{2}\right)\right\rangle \\
G_{12}^{\mathrm{A}(\text { dvanced })} & =-i\left\langle\phi_{q}\left(t_{1}, x_{1}\right) \phi_{c l}\left(t_{2}, x_{2}\right)\right\rangle
\end{aligned}
$$

Propagators in the Schwinger-Keldysh technique

- The tree-level retarded propagators characterize the particle spectrum and do not depend on the initial state:

$$
i G_{12}^{\mathrm{R}, \text { free }}=i G_{21}^{\mathrm{A}, \text { free }}=\theta\left(t_{1}-t_{2}\right) \sum_{n}\left(f_{1, n}^{\mathrm{in}} f_{2, n}^{\mathrm{in} *}-\text { H.c. }\right),
$$

where we introduce the short notation $f_{a, n}^{\mathrm{in}}=f_{n}^{\mathrm{in}}\left(t_{a}, x_{a}\right)$.

- The tree-level Keldysh propagator is determined by initial quantum averages of interest to us:

$$
i G_{12}^{\mathrm{K}, \mathrm{free}}=\sum_{p, q}\left[\left(\frac{\delta_{p q}}{2}+n_{p q}^{\mathrm{in}}\right) f_{1, p}^{\mathrm{in}} f_{2, q}^{\mathrm{in} *}+\kappa_{p q}^{\mathrm{in}} f_{1, p}^{\mathrm{in}} f_{2, q}^{\mathrm{in}}+\text { H.c. }\right] .
$$

- Furthermore, propagators approximately preserve their tree-level form as

$$
\frac{t_{1}+t_{2}}{2} \gg \frac{1}{\lambda \Lambda} \quad \text { and } \quad \frac{t_{1}+t_{2}}{2} \gg\left|t_{1}-t_{2}\right| .
$$

- This property allows us to extract the corrected quantum averages in the interacting theory from the exact Keldysh propagator in the limit in question

Estimate of the exact Keldysh propagator

- To estimate the loop resummed Keldysh propagator in the interacting model with resonantly moving mirrors, we make four crucial observations
- First, we map the resonant mirror trajectories to stationary ones:

$$
t+x=G^{-1}(\tau+\xi), \quad t-x=G^{-1}(\tau-\xi)
$$

in all internal vertices of diagrams that describe loop corrections to the Keldysh propagator, e.g.:

$$
\begin{aligned}
V= & -i \lambda \int_{t_{0}}^{T} d t \int_{L(t)}^{R(t)} d x f_{m}^{\mathrm{in}}(t, x) f_{n}^{\mathrm{in}}(t, x) f_{p}^{\mathrm{in}}(t, x) f_{q}^{\mathrm{in}}(t, x) \\
= & -i \lambda \int_{\tau_{0}}^{\tau_{f}} d \tau \int_{0}^{1} d \xi \frac{d G^{-1}(\tau-\xi)}{d \tau} \frac{d G^{-1}(\tau+\xi)}{d \tau} \times \\
& \times e^{-i \pi(m+n+p+q) \tau} \frac{\sin (\pi m \xi) \sin (\pi n \xi) \sin (\pi p \xi) \sin (\pi q \xi)}{\pi^{2} \sqrt{m n p q}}
\end{aligned}
$$

Estimate of the exact Keldysh propagator

- Second, we expect that the leading contribution to the loop corrections come from large evolution times: $t / \Lambda=\tau \gg 1 / \epsilon$
- Hence, we can approximate the function $d G^{-1}(z) / d z$ with a piecewise-linear function close to a sum of Dirac delta functions
- Third, the exponential decay of the Bogoliubov coefficients imply that sums over the virtual momenta are effectively cut off at mode numbers $n \sim 1 / \delta_{s}$
- Keeping in mind this cutoff, we replace the approximate delta functions with exact ones and reduce the vertex integrals to sums:

$$
V \approx-i \lambda \Lambda^{2} \sum_{s=1 / \epsilon}^{\tau_{f}} g_{m}^{s} g_{n}^{s} g_{p}^{s} g_{q}^{s},
$$

where we introduce the notation for the "remnant" of the initial mode $f_{n}^{\mathrm{in}}(t, x)$:

$$
f_{n}^{\mathrm{in}}(t, x) \rightarrow g_{n}^{s}=-i \frac{(-1)^{s}}{\sqrt{\pi n}} \frac{1-(-1)^{n}}{2}
$$

Estimate of the exact Keldysh propagator

- Fourth, now, it is straightforward to see that diagrams containing internal retarded/advanced propagators are approximately zero
- Indeed, the "remnants" of internal modes are purely imaginary, and their product is purely real, so their combination $f_{1, n}^{\mathrm{in}} f_{2, n}^{\mathrm{in} *}-$ H.c. ≈ 0
- Hence, we can consider only such loop diagrams where internal vertices are connected by the Keldysh propagators alone
- There are four such diagrams, three of which are trivially absorbed into the renormalized mass

(a)

(b)

(c)

(d)

Figure: Loop corrections to the Keldysh propagator that do not contain internal retarded/advanced propagators. Solid lines denote the tree-level Keldysh propagators, half-dashed lines denote the retarded/advanced propagators.

Estimate of the exact quantum averages

- Keeping in mind these approximations, we obtain the leading loop correction to initial quantum averages:

$$
\Delta n_{p q}^{\mathrm{in}} \approx \Delta \kappa_{p q}^{\mathrm{in}} \approx \frac{3}{5 \pi} \frac{1-(-1)^{p q}}{2 \sqrt{p q}}(\lambda \Lambda T)^{2}\left(\frac{\epsilon T}{\Lambda}\right)^{3},
$$

for $p, q \ll 1 / \delta_{\tau_{f}} \sim e^{2 \pi \epsilon T / \Lambda}$

- Finally, we determine the relative correction to the quantum averages $n_{p q}^{\text {out }}$ and $\kappa_{p q}^{\text {out }}$, which are physically meaningful in the asymptotic future:

$$
\frac{\Delta n_{p q}^{\text {out }}}{n_{p q}^{\text {out }}} \approx \frac{\Delta \kappa_{p q}^{\text {out }}}{\kappa_{p q}^{\text {out }}} \approx \frac{12}{5}(\lambda \Lambda T)^{2}\left(\frac{\epsilon T}{\Lambda}\right)^{4}
$$

- So, loop contributions to the energy level density and correlated pair density significantly exceed the tree-level expressions in the time interval $1 / \lambda \Lambda^{2} \ll T / \Lambda \ll 1 /\left(\lambda \Lambda^{2}\right)^{2}$ and $1 / \epsilon \ll T / \Lambda \ll 1 / \epsilon^{2}$

Discussion and open questions

- We considered the nonlinear dynamical Casimir effect in a one-dimensional cavity
- We calculated the leading loop corrections to the quantum averages (in particular, the number of created particles) generated during the resonant motion of cavity walls
- At large times, loop corrections significantly exceed the tree-level values of quantum averages
- This result encourages a careful measurement of the large-time behavior of quantum averages in the experimental implementations of the dynamical Casimir effect
- It is interesting to extend this result to other types of the resonant motion
- In addition, the nonlinear dynamical Casimir effect is very similar to a light interacting field in a rapidly expanding universe, so it would be promising to study our calculations in light of this relation

