Strongly Nonlinear Diffusion in Turbulent Environment: A Problem with Infinitely Many Couplings

Saint Petersburg State University (SPBU)
High Energy Physics Department

Authors: Nikolay V. Antonov, Andrew A. Babakin, Polina I. Kakin
Speaker:
Babakin Andrew Alexandrovich
(st068365@student.spbu.ru)
Education: bachelor's degree

Date: 10.10.2022

Introduction

I. Formulation of the model

The general advection-diffusion equation:

$$
\begin{equation*}
\nabla_{t} \theta=\partial_{i} J_{i}+f, \quad \nabla_{t}=\partial_{t}+\left(v_{i} \partial_{i}\right), \quad\{i=1, \ldots, d\} \tag{1}
\end{equation*}
$$

The random noise $f=f(x)$ is taken to be Gaussian with zero mean, δ-correlated in time, with the pair correlation function:

$$
\begin{gather*}
\left\langle f(x) f\left(x^{\prime}\right)\right\rangle_{f}=\delta\left(t-t^{\prime}\right) \int_{k>m} \frac{d \mathbf{k}}{(2 \pi)^{d}} D_{f}(k) \exp \left\{i \mathbf{k}\left(\mathbf{x}-\mathbf{x}^{\prime}\right)\right\} \tag{2}\\
D_{f}(k)=D_{0} k^{2-d-y}, \quad D_{0}>0
\end{gather*}
$$

The velocity field $\mathbf{v}=\left\{v_{i}(x)\right\}, i=1, \ldots, d$ is described by the KazantsevKraichnan "rapid-change ensemble". It means that the velocity field is taken Gaussian, with zero mean and the given pair correlation function

$$
\begin{gather*}
\left\langle v_{i}(x) v_{j}\left(x^{\prime}\right)\right\rangle_{v}=\delta\left(t-t^{\prime}\right) B_{0} \int_{k>m} \frac{d \mathbf{k}}{(2 \pi)^{d}} \frac{1}{k^{d+\xi}} P_{i j}(\mathbf{k}) \exp \left\{\mathrm{i} \mathbf{k}\left(\mathbf{x}-\mathbf{x}^{\prime}\right)\right\} \tag{3}\\
B_{0}>0, \quad B_{0}=w \nu_{0}, \quad 0<\xi<2, \quad P_{i j}=\delta_{i j}-\frac{k_{i} k_{j}}{k^{2}}
\end{gather*}
$$

Introduction

I. Formulation of the model

There are physical reasons to believe that the structure and correlation functions can exhibit scaling behavior in the IR region:

$$
\begin{gather*}
C_{2 n}(t, r)=\left\langle[\theta(t, \mathbf{x})-\theta(0,0)]^{2 n}\right\rangle \simeq r^{-2 n \Delta_{\theta}} F_{2 n}\left(t r^{\Delta_{t}}\right), \quad r=|\mathbf{x}| \tag{4}\\
G(t, r)=\left\langle\theta(t, \mathbf{x}) \theta^{\prime}(0, \mathbf{0})\right\rangle \simeq r^{-\Delta_{\theta}-\Delta_{\theta^{\prime}}} F\left(t r^{\Delta_{t}}\right) \tag{5}
\end{gather*}
$$

It is the IR asymptotics that arose the interest, so only the first term can be left in the expression for the current $J_{i}=\partial_{i} V(\theta)+O\left(\partial^{3}\right)$.
Furthermore, function $V(\theta)$ have the explicit form:

$$
\begin{equation*}
V(\theta)=\sum_{n=1}^{\infty} \frac{1}{n!} \lambda_{n 0} \theta^{n} \tag{6}
\end{equation*}
$$

Dimensional analysis shows that to study nonlinear diffusion, all terms in this sum must be taken into account.

Introduction

II. Field theoretic formulation

In this case, the stochastic advection-diffusion equation takes the form:

$$
\begin{equation*}
\nabla_{t} \theta(x)=\partial^{2} V(\theta(x))+f(x) \tag{7}
\end{equation*}
$$

According to the general De Dominicis-Janssen theorem the original stochastic problem is equivalent to the field theoretic model of an extended set of fields $\Phi=\left\{\theta^{\prime}, \theta, \mathbf{v}\right\}$ with the action functional $\mathcal{S}(\Phi)=\mathcal{S}_{\theta}(\Phi)+\mathcal{S}_{v}(\mathbf{v})$, where

$$
\begin{gather*}
\mathcal{S}_{\theta}(\Phi)=\frac{1}{2} \theta^{\prime} D_{f} \theta^{\prime}+\theta^{\prime}\left[-\nabla_{t} \theta+\partial^{2} V(\theta)\right] \tag{8}\\
\mathcal{S}_{v}(\mathbf{v})=-\frac{1}{2} \int d t \int d \mathbf{x} \int d \mathbf{x}^{\prime} v_{i}(t, \mathbf{x}) D_{i j}^{-1}\left(\mathbf{x}-\mathbf{x}^{\prime}\right) v_{j}\left(t, \mathbf{x}^{\prime}\right) \tag{9}
\end{gather*}
$$

Here $D_{i j}^{-1}$ is kernel of the integration operation that is reversed to $D_{i j}=\left\langle v_{i} v_{j}\right\rangle_{v}$.

Introduction

III. Analysis program

The following steps were taken there:
(1) It was shown that the constructed model is multiplicatively renormalizable. Also we derived the one-loop counterterm in closed form and calculate the full set of renormalization constants Z_{n} in the one-loop approximation.
(2) We wrote out the RG functions (anomalous dimensions γ and β functions).
(3) The RG equations was written there. We showed that their solutions are two attractors in the form of a pair of two-dimensional surfaces of fixed points in the infinite-dimensional parameter space. For each of these surfaces, there was investigated the critical dimensions of fields and frequencies that arise in formulas (4) and (5).

Analysis of the constructed model

I. Canonical dimensions

Canonical dimension of any value F :

$$
\begin{equation*}
[F] \sim[T]^{-d_{F}^{\omega}}[L]^{-d_{F}^{k}} \tag{10}
\end{equation*}
$$

The complete canonical dimension is defined as $d_{F}=d_{F}^{k}+2 d_{F}^{\omega}$.
It is possible to introduce new parameters (couplings) according to the following relations:

$$
\begin{equation*}
\lambda_{n 0}=g_{n 0} \nu_{0}^{(n+1) / 2}, \quad \lambda_{n}=g_{n} \nu^{(n+1) / 2} \mu^{y(n-1) / 2}, \quad n>1 \tag{11}
\end{equation*}
$$

Then

F	θ	θ^{\prime}	\mathbf{v}	m, μ	B_{0}	$\lambda_{n 0}$
d_{F}^{k}	$1-y / 2$	$d-1+y / 2$	-1	1	$\xi-2$	$y(n-1) / 2-(n+1)$
d_{F}^{ω}	$-1 / 2$	$1 / 2$	1	0	1	$(n+1) / 2$
d_{F}	$-y / 2$	$d+y / 2$	1	1	ξ	$y(n-1) / 2$
F	λ_{n}	ν_{0}, ν	w_{0}	$g_{n 0}$	w	g_{n}
d_{F}^{k}	$-(n+1)$	-2	ξ	$y(n-1) / 2$	0	0
d_{F}^{ω}	$(n+1) / 2$	1	0	0	0	0
d_{F}	0	0	ξ	$y(n-1) / 2$	0	0

Table №1: Canonical dimensions of the model (8), (9).

Analysis of the constructed model

II. Renormalization

Superficial UV divergences can appear in the 1-irreducible Green's functions with the formal index of divergence

$$
\begin{equation*}
\delta=(d+2)-d_{\theta^{\prime}} N_{\theta^{\prime}}-d_{\theta} N_{\theta}-d_{\mathbf{v}} N_{\mathbf{v}} \tag{12}
\end{equation*}
$$

When analyzing the divergences of this model, one should take into account the following considerations:

1. All the 1 -irreducible functions without the fields θ^{\prime} in fact vanish.
2. In any 1 -irreducible diagram each external field θ^{\prime}, attached to one of the vertices $\theta^{\prime}\left(v_{i} \partial_{i}\right) \theta$ or $\theta^{\prime} \partial^{2} \theta^{n}$, "releases" the corresponding external momentum, and the real index of divergence: $\delta-2 N_{\theta^{\prime}} \leq \delta^{\prime} \leq \delta-N_{\theta^{\prime}}$.
3. The counterterm $\theta^{\prime} \partial_{t} \theta$, allowed by the formal index δ, is in fact forbidden by the item (2): it does not contain a spatial gradient. On the other hand, because of the Galilean symmetry of the model there are also forbidden the counterterm $\theta^{\prime}\left(v_{i} \partial_{i}\right) \theta$.

Analysis of the constructed model

II. Renormalization

So, the superficial UV divergences in fact are only presented in the functions $\left\langle\theta^{\prime} \theta \ldots \theta\right\rangle$. For all of them $\delta=2, \delta^{\prime}=0$, and the counterterms can be reduced to the form $\theta^{\prime} \partial^{2} \theta^{n}$. All such terms are already presented in the action functional (8), therefore, the model is multiplicatively renormalizable. Renormalized action functional:

$$
\begin{gather*}
\mathcal{S}_{R}(\Phi)=\frac{1}{2} \theta^{\prime} D_{f} \theta^{\prime}+\theta^{\prime}\left\{-\nabla_{t} \theta+\partial^{2} V_{R}(\theta)\right\}+\mathcal{S}_{v R}(\mathbf{v}) \tag{13}\\
V_{R}(\theta)=\sum_{n=1}^{\infty} \frac{1}{n!} Z_{n} \lambda_{n} \theta^{n} \quad B_{0}=B=w \nu \mu^{\xi}
\end{gather*}
$$

The functional (13) is obtained from (8) using the relations:

$$
\begin{gather*}
\lambda_{n 0}=\lambda_{n} Z_{n}(n \geq 1), \quad \nu_{0}=\nu Z_{\nu}, \quad w_{0}=w \mu^{\xi} Z_{w} \tag{14}\\
g_{n 0}=g_{n} \mu^{(n-1) y / 2} Z_{g_{n}}(n \geq 2)
\end{gather*}
$$

The constants $Z_{w}, Z_{g_{n}}$ and Z_{ν} can be expressed in terms of Z_{n} :

$$
\begin{equation*}
Z_{\nu}=Z_{1}, \quad Z_{g_{n}}=Z_{n} Z_{1}^{-(n+1) / 2}, \quad Z_{w}=Z_{1}^{-1} \tag{15}
\end{equation*}
$$

Analysis of the constructed model

III. Calculation of the One - Loop Counterterm

Generating functional of 1-irreducible Green's functions in the renormalized theory:

$$
\begin{equation*}
\Gamma_{R}(\Phi)=\sum_{p=0}^{\infty} \Gamma^{(p)}(\Phi), \quad \Gamma^{(0)}(\Phi)=\mathcal{S}_{R}(\Phi), \quad \Gamma^{(1)}(\Phi)=-(1 / 2) \operatorname{Tr} \ln \left(W / W_{0}\right) \tag{16}
\end{equation*}
$$

Here W is a linear operator with the kernel

$$
W\left(x, x^{\prime}\right)=-\delta^{2} S_{R}(\Phi) / \delta \Phi(x) \delta \Phi\left(x^{\prime}\right)
$$

For the Z_{n} only the UV-divergent part $\Gamma^{(1)}(\Phi)$ is needed there. In particular, it causes that (16) is sufficient to know only in the 1st order in the elements $W^{(\theta \theta)}, W^{(\theta v)}$ and $W^{(v \theta)}$ that are linear in θ^{\prime}. All these considerations make it possible to explicitly write out the divergent part $\Gamma^{(1)}(\Phi)$ as poles in y and ξ (in the MS scheme):
$\Gamma^{(1)}(\Phi)=\frac{a_{d}}{4 y}\left(\frac{\mu}{m}\right)^{y} \int d x \theta^{\prime}(x) \partial^{2} F(\theta(x))+a_{d} \frac{(d-1)}{2 d} \frac{w \nu}{\xi}\left(\frac{\mu}{m}\right)^{\xi} \int d x \theta^{\prime}(x) \partial^{2} \theta(x)$.

Analysis of the constructed model

IV. The explicit expression of \boldsymbol{Z}_{n} in the MS scheme

Here $a_{d}=S_{d} /(2 \pi)^{d}$, where $S_{d}=2 \pi^{d / 2} / \Gamma(d / 2)$. Function $F(\theta)$ is defined as

$$
\begin{equation*}
F(\theta)=\mu^{-y} \frac{V^{\prime \prime}(\theta)}{V^{\prime}(\theta)} \tag{18}
\end{equation*}
$$

Potential function $V(\theta)$ is given by the expression for $V_{R}(\theta)$ from (13) with the substitution $Z_{n}=1$.
At the moment, it is not possible to continue the analysis in terms of closed functional representations
It remains only to expand $F(\theta)$ back in the powers of θ

$$
\begin{equation*}
F(\theta)=\sum_{n=0}^{\infty} \frac{1}{n!} \mu^{y(n-1) / 2} \nu^{(n+1) / 2} r_{n} \theta^{n} \tag{19}
\end{equation*}
$$

So, from the requirement that the poles in y and ξ should be canceled in the loop expansion (16) we get

$$
\begin{equation*}
Z_{1}=1-\frac{a_{d}}{4} \frac{r_{1}}{y}-\frac{a_{d}(d-1)}{2 d} \frac{w}{\xi}, \quad Z_{n}=1-\frac{a_{d}}{4} \frac{r_{n}}{y} \frac{1}{g_{n}} \quad(n>1) \tag{20}
\end{equation*}
$$

Analysis of the constructed model

V. The RG equation, anomalous dimensions γ and β functions

The RG equation for a multiplicatively renormalizable theory:

$$
\begin{equation*}
\left\{\mathcal{D}_{\mu}-\beta_{w} \partial_{w}-\sum_{n=2}^{\infty} \beta_{n} \partial_{g_{n}}-\gamma_{\nu}\right\} G(e ; \ldots)=0 \tag{21}
\end{equation*}
$$

The anomalous dimensions γ and β functions are defined as

$$
\begin{equation*}
\gamma_{F}=\tilde{\mathcal{D}}_{\mu} \ln Z_{F} \quad \forall \mathrm{~F}, \quad \beta_{w}=\tilde{\mathcal{D}}_{\mu} w, \quad \beta_{n}=\widetilde{\mathcal{D}}_{\mu} g_{n} \tag{22}
\end{equation*}
$$

According to the definitions (22)and the expressions (14), (15) all RG functions can be expressed in terms of the anomalous dimensions γ_{n} :

$$
\begin{array}{cc}
\gamma_{\nu}=-\gamma_{w}=\gamma_{1}, & \gamma_{g_{n}}=\gamma_{n}-(n+1) \gamma_{1} / 2, \\
\beta_{w}=w\left[-\xi+\gamma_{1}\right], & \beta_{n}=g_{n}\left[-(n-1) y / 2-\gamma_{n}+(n+1) \gamma_{1} / 2\right]
\end{array}
$$

Substitution of the one-loop expressions (20) into definitions (22) gives:

$$
\begin{equation*}
\gamma_{1}=\tilde{\mathcal{D}}_{\mu} \ln Z_{1}=\frac{a_{d}}{4} r_{1}+\frac{a_{d}(d-1)}{2 d} w, \quad \quad \gamma_{n}=\tilde{\mathcal{D}}_{\mu} \ln Z_{n}=\frac{a_{d}}{4} \frac{r_{n}}{g_{n}} \tag{25}
\end{equation*}
$$

Analysis of the constructed model

VI. Fixed points of the RG equation, calculation of the critical dimensions

Attractors of the RG equation:

$$
\begin{equation*}
\beta_{w}\left(w^{*}, g_{n}^{*}\right)=0, \quad \beta_{n}\left(w^{*}, g_{n}^{*}\right)=0 \quad(n>1) \tag{26}
\end{equation*}
$$

For the β_{w} function, from (24) and (25) we get:

$$
\begin{equation*}
\beta_{w}=w\left[-\xi+\frac{a_{d}}{4}\left(g_{3}-g_{2}^{2}\right)+\frac{a_{d}(d-1)}{2 d} w\right] \tag{27}
\end{equation*}
$$

Thus, the first equation in (26) has two solutions: $w^{*}=0$ and

$$
w^{*}=2 d\left[\xi-a_{d}\left(g_{3}-g_{2}^{2}\right) / 4\right] /\left(a_{d}(d-1)\right)
$$

For the first case $w^{*}=0$ equation (24) gives:

$$
\begin{equation*}
\beta_{n}=-g_{n}(n-1) y / 2+\left(a_{d} / 8\right)\left[-2 r_{n}+(n+1) g_{n} r_{1}\right] \tag{28}
\end{equation*}
$$

Whereas for $w^{*} \neq 0$ the equation implies:

$$
\begin{equation*}
\beta_{n}=g_{n}[-(n-1) y / 2+(n+1) \xi / 2]-\left(a_{d} / 4\right) r_{n} \tag{29}
\end{equation*}
$$

Analysis of the constructed model

VI. Fixed points of the RG equation, calculation of the critical dimensions

In both cases, the successive substitution of solutions of the equations $\beta_{w}=0, \beta_{k}=0$ with $k \leq n$ into the remaining equations $\beta_{k}=0$ with $k>n$ allows us to express all the quantities g_{n}^{*} with $n>3$ through two parameters g_{2}^{*} and g_{3}^{*}.
So we conclude that the attractor for the system (26) consists of a pair of two-dimensional surfaces.

For the dynamical models critical dimension of the quantity F :

$$
\begin{equation*}
\Delta_{F}=d_{F}^{k}+\Delta_{\omega} d_{F}^{\omega}+\gamma_{F}^{*}, \quad \Delta_{\omega}=2-\gamma_{\nu}^{*} \tag{30}
\end{equation*}
$$

From the data of Table №1 and the ratios $\gamma_{\theta}=\gamma_{\theta^{\prime}}=\gamma_{m}=0$ we get

$$
\begin{gather*}
\Delta_{\theta}=(1-y / 2)-(1 / 2) \Delta_{\omega} \tag{31}\\
\Delta_{\theta^{\prime}}=(d-1+y / 2)+(1 / 2) \Delta_{\omega}
\end{gather*}
$$

The critical dimension Δ_{ω} depends on the exact solution of the RG equation.

Analysis of the constructed model

VI. Fixed points of the RG equation, calculation of the critical dimensions

For the surface with $w^{*}=0$ we have

$$
\begin{equation*}
\Delta_{\omega}=2-a_{d}\left(g_{3}-g_{2}^{2}\right) / 4 \tag{32}
\end{equation*}
$$

and, respectively, conclude that the critical dimensions (31) are nonuniversal. It means that they depend on the specific choice of a fixed point on the attractor surface.
For the second sheet with $w^{*} \neq 0$:

$$
\begin{equation*}
\Delta_{\omega}=2-\xi \tag{33}
\end{equation*}
$$

So

$$
\begin{equation*}
\Delta_{\theta}=\frac{1}{2}(\xi-y) \quad \Delta_{\theta^{\prime}}=d+\frac{1}{2}(y-\xi) \tag{34}
\end{equation*}
$$

For $w^{*} \neq 0$ the dimensions are universal. In both cases, these dimensions are subject to exact relations: $\Delta_{\theta^{\prime}}+\Delta_{\theta}=d$ и $2 \Delta_{\mathbf{v}}=-\xi+\Delta_{\omega}$.

Application

The spreading of a cloud of admixed particles

Let us consider the spreading of a cloud of admixed particles in a turbulent medium. The effective radius of the cloud of such particles at time

$$
\begin{equation*}
R^{2}(t)=\int d \mathbf{x} x^{2}\left\langle\theta(t, \mathbf{x}) \theta^{\prime}(0, \mathbf{0})\right\rangle \tag{35}
\end{equation*}
$$

Substituting the scaling representation (5) and taking into account the ratio $\Delta_{\theta}+\Delta_{\theta^{\prime}}=d$, one can easily arrive at the following propagation law:

$$
\begin{equation*}
R^{2}(t) \propto t^{2 / \Delta_{\omega}} \tag{36}
\end{equation*}
$$

or, equivalently:

$$
\begin{equation*}
d R^{2}(t) / d t \propto R^{2-\Delta_{\omega}}(t)=R^{\xi}(t) \tag{37}
\end{equation*}
$$

where we used expression (33) derived for the case $w^{*} \neq 0$. The special choice $\xi=4 / 3$ in the Kazantsev-Kraichnan ensemble corresponds to the assumptions of the Kolmogorov-Obukhov theory of turbulence. As result, we have the statement of Richardson's "four-thirds" law: $d R^{2} / d t \propto R^{4 / 3}$.

Conclusion

I. Main results

(1) The multiplicative renormalizability of the model requires taking into account an infinite number of the interaction terms in the original diffusion equation. The result is an infinite set of coupling constants.
(2) The one-loop counterterm was explicitly constructed in closed form, which made it possible to find the complete set of γ and β functions in the one-loop approximation.
(3) The RG equations have two attractors in the form of a pair of two-dimensional surfaces of fixed points ($w^{*}=0$ and $w^{*} \neq 0$).
(4) The first surface corresponds to the critical dimensions $\Delta_{\theta}, \Delta_{\theta^{\prime}}$ and Δ_{ω}, which are nonuniversal. The same critical dimensions for the second surface turned out to be universal and were found explicitly (see (34)).

Conclusion

II. Prospects for further analysis

As a further study, we can consider the following questions that remained open in the framework of the work under discussion:
(1) The results obtained in this work can be compared with the results in the "problem of turbulent advection of a passive scalar impurity". There instead of the Kraichnan ensemble, turbulence was described by the stochastic Navier-Stokes equation. It is proposed to consider an intermediate ensemble of Gaussian velocities with a finite correlation time.
(2) An infinite number of functions β_{n}, and the necessity (for the lack of a better option) of introduction the coefficients r_{n}. It would be desirable to carry out the RG analysis in terms not of an infinite set of functions, but of the functional $\beta(V)$.

Gratitudes

Thank a lot for your attention!

Prepared a presentation and performed:
The student of the Saint Petersburg State University
The Faculty of Physics
High Energy Physics Department
Babakin Andrew Alexandrovich
(st068365@student.spbu.ru)

