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Introduction

I. Formulation of the model

The general advection-diffusion equation:
V0 = 6;J; + f, Vt:3t+(’v7;6i), {i:l,...,d}. (1)

The random noise f = f(z) is taken to be Gaussian with zero mean,
d-correlated in time, with the pair correlation function:

(F(@)f(&))s = 6(t— 1) / %Df(k) explik(x—x)},  (2)
k>m

Ds(k) = Do k*™*7Y, Dy > 0.

The velocity field v = {vs(z)}, © = 1,...,d is described by the Kazantsev—
Kraichnan “rapid-change ensemble”. It means that the velocity field is taken
Gaussian, with zero mean and the given pair correlation function

(vi(z)vj(z"))w = 6(t — t')Bo / % kd%f Py;(k) exp{ik(x — x)}, (3)
k>m

kik;
By >0, By = wuy, 0<£<2, Pij:é.,;_f,'—ij.
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I. Formulation of the model

There are physical reasons to believe that the structure and correlation
functions can exhibit scaling behavior in the IR region:

Can(t,r) = ([B(t,x) — 6(0,0)]"") = r™2"%¢ B (tr°¢), r=|x. (4)

G(t,r) = (8(t,x)0'(0,0)) ~ r~ 22" p(trht). (5)

It is the IR asymptotics that arose the interest, so only the first term can
be left in the expression for the current J; = 8;V () + O(8?).
Furthermore, function V(8) have the explicit form:

ve)=>_ % Ang 6™ (6)

Dimensional analysis shows that to study nonlinear diffusion, all terms in
this sum must be taken into account.
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11. Field theoretic formulation

In this case, the stochastic advection-diffusion equation takes the form:
V:b(z) = 8°V(8(2)) + f(2). (7

According to the general De Dominicis—Janssen theorem the original
stochastic problem is equivalent to the field theoretic model of an extended
set of fields & = {¢’,6, v} with the action functional S(®) = Se(®) + Su(v),
where

1 / / !
So(®) = 36'Ds0' +6' [-V.6 + 8V (6)], (8)

Su(v) = —%/dt/dx/dx'vi(t,x)Di_jl(x—x/)'uj(t,x/). )

Here ijl is kernel of the integration operation that is reversed to
Dij = (vivj)v.
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I1I. Analysis program

The following steps were taken there:

(1) It was shown that the constructed model is multiplicatively
renormalizable. Also we derived the one-loop counterterm in closed
form and calculate the full set of renormalization constants Z, in the
one-loop approximation.

(2) We wrote out the RG functions (anomalous dimensions v and S
functions).

(3) The RG equations was written there. We showed that their
solutions are two attractors in the form of a pair of two-dimensional
surfaces of fixed points in the infinite-dimensional parameter space.
For each of these surfaces, there was investigated the critical
dimensions of fields and frequencies that arise in formulas (4) and (5).
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I. Canonical dimensions

Canonical dimension of any value F':
[F) ~ 7] %% [L] % (10)

The complete canonical dimension is defined as dp = d% + 2d%.
It is possible to introduce new parameters (couplings) according to the
following relations:

Ao = gnotS" T2 A = g2 V02 sy (11)
Then

F 6 6 v m, u By Ano

| 1-y/2 |d-1+y/2] -1 1 E-2|y(n-1)/2-(n+1)
s -1/2 1/2 1 0 1 (n+1)/2

dr | —y/2 d+y/2 | 1 1 ¢ y(n-1)/2

F )‘n Vo, V Wo Ino w In

& -n+1) -2 & ly(n=-1)/2] 0 0

g || (n+1)/2 1 0 0 0 0

dp 0 € |ly(n-1)/2] o0 0

Table Nel: Canonical dimensions of the model (8), (9).
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II. Renormalization

Superficial UV divergences can appear in the 1-irreducible Green’s
functions with the formal index of divergence

6= (d + 2) — dg' Ngt — dogNg — dy N (12)

When analyzing the divergences of this model, one should take into account
the following considerations:

1. All the 1-irreducible functions without the fields 8’ in fact vanish.

2. In any l-irreducible diagram each external field 8, attached to one of the
vertices 6'(v;8;)0 or 6'9%0™, “releases” the corresponding external
momentum, and the real index of divergence: § — 2Ng < §' < § — Nyr.

3. The counterterm 6'8;6, allowed by the formal index 4, is in fact forbidden
by the item (2): it does not contain a spatial gradient. On the other hand,
because of the Galilean symmetry of the model there are also forbidden the
counterterm 6'(v;8;)#.



Analysis of the constructed model

II. Renormalization

So, the superficial UV divergences in fact are only presented in the
functions (9'6...86). For all of them § = 2, §' = 0, and the counterterms can
be reduced to the form 6'6%6™. All such terms are already presented in the
action functional (8), therefore, the model is multiplicatively renormalizable.

Renormalized action functional:

Sr(®) = %9’Df9’ +6'{-V.:6+8°Va(8)} + Sur(v), (13)
1 n _RB_ ¢
Va(6) =) 7 ZnAn " Bo=B=wwut.
n=1

The functional (13) is obtained from (8) using the relations:
Ao =AZn (n>1), vo=vZ,, wo= w,uEZw, (14)

gro = gnp" VY220, (n > 2).

The constants Z,, Z4, and Z, can be expressed in terms of Zn:

Z, =71, Z,, =2,2; "2 gz,=2z37" (15)
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I1I. Calculation of the One - Loop Counterterm

Generating functional of 1-irreducible Green’s functions in the renormalized
theory:

Tr(2) =) I'P(@), TO@)=35r(2), I'Y(@)=—(1/2)Tr In(W/Wo).
p=0
(16)
Here W is a linear operator with the kernel

W(z,z') = —6° Sr(®) /6%(z)5%(z").

For the Z, only the UV-divergent part I'*)($) is needed there. In
particular, it causes that (16) is sufficient to know only in the 1st order in

the elements W9, W) and W9 that are linear in 6’. All these
considerations make it possible to explicitly write out the divergent part
M) (@) as poles in y and ¢ (in the MS scheme):

@) =2 (L) / 42 6/(2) 8° F (8(2))+aq EZ 1) 22 (ﬁf / dz6'(2) 6%6(z).

4y 2d £ \m
(17)
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IV. The explicit expression of Z, in the MS scheme

Here ag = Sq/(27)%, where Sy = 27%/2/T'(d/2). Function F (6) is defined as

V" (8)
Vi)’

F(6) = p (18)
Potential function V' (0) is given by the expression for Vg (6) from (13) with
the substitution Z, = 1.

At the moment, it is not possible to continue the analysis in terms of closed
functional representations

It remains only to expand F'(6) back in the powers of 8

oo

Fe)=) % gD/ (/2 g (19)
n=0

So, from the requirement that the poles in y and £ should be canceled in
the loop expansion (16) we get

agrn 1
Z1=1—-——— ———F—, Zp=1— ——— 1). 2
R ST RS syg "7V 00
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V. The RG equation, anomalous dimensions y and B functions

The RG equation for a multiplicatively renormalizable theory:

{DH — BuBu = Y Pnda, — 7V} Gle;...) = 0. (21)

The anomalous dimensions 7 and B functions are defined as
YFP = 5“ InZp VF, ,Bw = '5;; w, /3n = 5# gn. (22)

According to the definitions (22)and the expressions (14), (15) all RG
functions can be expressed in terms of the anomalous dimensions 7yx:

Yo = —Yw =1, Yon =Tn — (n+1)71/2, (23)
Buw = w[—& + 1], Br=gn[-(n=1)y/2 =y + (n+1)71/2]. (24)

Substitution of the one-loop expressions (20) into definitions (22) gives:

(d_l)w, "yn_'Dﬂann_%r—n. (25)

D,Llnzlzzrl—i—T 4 gn
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VI. Fixed points of the RG equation, calculation of the critical dimensions

Attractors of the RG equation:
Buw(w*,gn) =0, PBn(w’,g7)=0 (n>1). (26)
For the By function, from (24) and (25) we get:

Buw=w —§+%(ga—g§)+%w ) (27)

Thus, the first equation in (26) has two solutions: w* = 0 and
w* = 2d[¢ — aa(gs — 93)/4]/(aa(d — 1)).
For the first case w* = 0 equation (24) gives:
Br = —gn(n—1)y/2+ (aa/8) [-2rn + (n+ 1)gnr1]. (28)
Whereas for w* # 0 the equation implies:

Brn=gn[—(n—1)y/2 4+ (n + 1)¢/2] — (aa/4) rn. (29)
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VI. Fixed points of the RG equation, calculation of the critical dimensions

In both cases, the successive substitution of solutions of the equations

Bw =0, Br = 0 with £ < n into the remaining equations Br = 0 with &k > n
allows us to express all the quantities g;, with n > 3 through two
parameters g5 and g3.

So we conclude that the attractor for the system (26) consists of a pair of
two-dimensional surfaces.

For the dynamical models critical dimension of the quantity F:
Ap =db + Audp +95, Du=2—7). (30)
From the data of Table Nel and the ratios 79 = v¢r = 7m = 0 we get
Bo = (1-y/2) — (1/2)Du, (31)

A = (d—1+4y/2) + (1/2)Au.

The critical dimension A, depends on the exact solution of the RG
equation.



Analysis of the constructed model

VI. Fixed points of the RG equation, calculation of the critical dimensions

For the surface with w* = 0 we have
Au=2—ad(gs—93)/4, (32)

and, respectively, conclude that the critical dimensions (31) are
nonuniversal. It means that they depend on the specific choice of a fixed
point on the attractor surface.

For the second sheet with w* # 0:

Dy =2—¢ (33)

So
Ro=3(E-v)  Be=d+u—d). (34)

For w* # 0 the dimensions are universal. In both cases, these dimensions
are subject to exact relations: Agr + Ag = d u 2A, = —§ + A,



Application

The spreading of a cloud of admixed particles

Let us consider the spreading of a cloud of admixed particles in a turbulent
medium. The effective radius of the cloud of such particles at time

R*(t) = / dx z*(6(t,x)8'(0, 0)). (35)

Substituting the scaling representation (5) and taking into account the ratio
Ag + Ay = d, one can easily arrive at the following propagation law:

R2(t) ox t*/ A% (36)
or, equivalently:
dR*(t)/dt o« R* %« (t) = R(t), (37)

where we used expression (33) derived for the case w* # 0. The special
choice ¢ = 4/3 in the Kazantsev—Kraichnan ensemble corresponds to the
assumptions of the Kolmogorov-Obukhov theory of turbulence. As result,
we have the statement of Richardson’s “four-thirds” law: dR?/dt o< R*/3.
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I. Main results

(1) The multiplicative renormalizability of the model requires taking into
account an infinite number of the interaction terms in the original diffusion
equation. The result is an infinite set of coupling constants.

(2) The one-loop counterterm was explicitly constructed in closed form,
which made it possible to find the complete set of v and B functions in the
one-loop approximation.

(3) The RG equations have two attractors in the form of a pair of
two-dimensional surfaces of fixed points (w* = 0 and w* # 0).

(4) The first surface corresponds to the critical dimensions Ag, Ag and
A, which are nonuniversal. The same critical dimensions for the second
surface turned out to be universal and were found explicitly (see (34)).
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11. Prospects for further analysis

As a further study, we can consider the following questions that remained
open in the framework of the work under discussion:

(1) The results obtained in this work can be compared with the results in
the “problem of turbulent advection of a passive scalar impurity”. There
instead of the Kraichnan ensemble, turbulence was described by the
stochastic Navier-Stokes equation. It is proposed to consider an
intermediate ensemble of Gaussian velocities with a finite correlation time.

(2) An infinite number of functions B, and the necessity (for the lack of a
better option) of introduction the coefficients r,. It would be desirable to
carry out the RG analysis in terms not of an infinite set of functions, but of
the functional B (V).
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