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Setup

We consider massive real scalar field

S =

∫︁
ddX

√︀
|g |

[︂
1
2
(𝜕𝜑)2 − m2

2
𝜑2 − 𝜆

n!
𝜑n

]︂
.

in various charts (patches or wedges) of Minkowski and de
Sitter space-times;
We restrict considerations to the Poincare and de Sitter
isometry invariant states. For such states the Wightman
propagator is:

W (X ,Y ) ≡
⟨
𝜑(X )𝜑(Y )

⟩
= F

[︁
L2
XY − i 𝜖 signΔX 0

]︁
.

Here F[Z ] is the analytic function the the complex plane with
the cut along time-like separations. From this correlation
function one can construct any other propagator.
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Why considering patches of entire space-times?

In studying Unruh effect one usually considers d-dimensional right
Rindler wedge:

X 1 ≥
⃒⃒
X 0⃒⃒ , X 0 = e𝜉 sinh 𝜏, X 1 = e𝜉 cosh 𝜏,

a quarter of the entire d-dimensional Minkowski space-time:

ds2 = (dX 0)2 − (dX 1)2 − (dX a)2 = e2𝜉(d𝜏2 − d𝜉2)− (dX a)2.

For academic studies one also can consider other patches: left
Rindler wedge, upper or future wedge and lower or past wedge.
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Various wadges of Minkowski space-time
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Figure: The dashed lines depict the Cauchy surfaces in various charts
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Why considering patches of entire space-times?

In studying inflation one usually considers Poincare patch:

ds2 = d𝜏2 − e2𝜏 (dx i )2 =
d𝜂2 − (dx i )2

𝜂2 , 𝜂 = e−𝜏 ,

which is a half, X 0 > −X d , of the entire d-dimensional de Sitter
hyperboloid

X 2
0 − X 2

a − X 2
d = −1, H = 1.

The hyperboloid is embedded into (d + 1)-dimensional ambient
Minkowski space-time

ds2 = dX 2
0 − dX 2

a − dX 2
d .

We do not really know what was the initial state of the Universe
(neither topology of Cauchy surfaces nor the Fock space state).
Hence, it is worth studying also other patches of the de Sitter
space-time. 5 / 17



What is the problem with the consideration of patches?

To consider full QFT in a patch one has to do loop integrals.
In the vertexes of the loop integrals one integrates over the
patch;
Namely, e.g. in the right Rindler wedge the measure of
integration over a vertex Y in a loop integral contains:

dVolY = ddY 𝜃(Y 1 − Y 0) 𝜃(Y 1 + Y 0)

The theta-functions violate the Poincare isometry of
Minkowski space-time;
Then, what about Poincare symmetry of the loop corrections?
The same problem appears also in de Sitter patches.
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The necessity of the Schwinger-Keldysh technique

Patches of entire space-times have boundaries. Roughly
speaking to quantize a theory in a patch one has to impose
boundary and/or initial conditions at the boundaries. Then,
instead of the Feynman one has to apply the
Schwinger-Keldysh diagrammatic technique;
In any case the Feynman technique does not provide
invariant loop corrections for any of the listed above patches.
Consider e.g. a vertex Y in the right Rindler wedge
connected to the internal and/or external vertexes X1, . . . ,Xn.
Then the loop integral contains:

I (X1, . . . ,Xn) =

∫︁
ddY 𝜃(Y 1 −Y 0) 𝜃(Y 1 +Y 0)

n∏︁
j=1

F (Y ,Xj).

Under the transformation Y 1 → Y 1 + 𝜖 which moves the
right Rindler wedge 𝛿𝜖I ̸= 0. Here F (Y ,X ) ≡⟨
T𝜑(X )𝜑(Y )

⟩
= F

[︁
L2
XY − i 𝜖

]︁
is the Feynman propagator.
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Schwinger-Keldysh vs. Feynman

Time evolution of a correlation function:

⟨
Ô
⟩
(t) ≡

⟨
𝜓0

⃒⃒⃒
Te

i
∫︀ t
t0

dt′ Ĥ(t′)
Ô Te

−i
∫︀ t
t0

dt′ Ĥ(t′)
⃒⃒⃒
𝜓0

⟩
,

where Ĥ(t) = Ĥ0(t) + V̂ (t). True both in Srodinger and
Heisenberg representations.
In the interaction representation:

⟨
Ô
⟩
(t) =

⟨
𝜓0

⃒⃒⃒
Ŝ+(t, t0) Ô0(t) Ŝ(t, t0)

⃒⃒⃒
𝜓0

⟩
=⟨

𝜓0

⃒⃒⃒
Ŝ+(+∞, t0)T

[︁
Ô0(t) Ŝ(+∞, t0)

]︁ ⃒⃒⃒
𝜓0

⟩
,

where Ŝ(t, t0) = Te
−i

∫︀ t
t0

dt′ V̂0(t′). The dependence on t0 is of
crucial importance here. In Schwinger-Keldysh technique
one has to perturbatively expand both Ŝ and Ŝ+ and the
dependence on the initial Cauchy surface t0 is there.
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When Feynman technique is applicable

Feynman technique is applicable in the equilibrium:
1 The normal ordered free Hamiltonian Ĥ0 is time independent

and bounded from below;
2 The expectation value should be taken over the ground state

of Ĥ0: |𝜓0⟩ = |0⟩, Ĥ0 |0⟩ = 0;
3 Interaction term, V̂ , is turned on adiabatically after t0 and

then switched off adiabatically after t. In effect we have to
make the substitution as follows:
Ŝ(+∞, t0) → Ŝtt0(+∞,−∞).

Then
⃒⃒⃒⟨
0
⃒⃒⃒
Ŝ
⃒⃒⃒
0
⟩⃒⃒⃒

= 1 and
⟨
n ̸= 0

⃒⃒⃒
Ŝ
⃒⃒⃒
0
⟩
= 0, where

Ŝ ≡ Ŝtt0(+∞,−∞), and⟨
Ô
⟩
(t) =

∑︁
n

⟨
0
⃒⃒⃒
Ŝ+

⃒⃒⃒
n
⟩⟨

n
⃒⃒⃒
T
[︁
Ô0(t) Ŝ

]︁ ⃒⃒⃒
0
⟩
=

=

⟨
0
⃒⃒⃒
T
[︁
Ô0(t) Ŝ

]︁ ⃒⃒⃒
0
⟩

⟨
0
⃒⃒⃒
Ŝ
⃒⃒⃒
0
⟩ , t0 is disappeared.

9 / 17



The Schwinger-Keldysh technique is causal

(a) (b)

Figure: The union of past ligh cones of external points of a diagram: (a)
in Minkowski space-time; (b) on the Penrose diagram of de Sitter
space-time; the blue line shows the boundary between Expanding and
Contracting Poincare Patches. Within the framework of the
Schwinger-Keldysh technique one integrates in the loop integrals over
these past light-cones.
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Analytical continuation from the Rindler wedge to the
Euclidian space

Consider e.g. a vertex Y in the right Rindler wedge connected to
the internal and/or external vertexes X1, . . . ,Xn. Then in the
Schwinger-Keldysh technique the loop integrals contain:

IK (X1, . . . ,Xn) =

∫︁
ddY 𝜃(Y 1 − Y 0) 𝜃(Y 1 + Y 0)×

×

⎡⎣ k∏︁
j=1

F (Y ,Xj)
n∏︁

j=k+1

W̄ (Y ,Xj)−
k∏︁

j=1

W (Y ,Xj)
n∏︁

j=k+1

F̄ (Y ,Xj)

⎤⎦ .
Due to analytic properties of the propagators F and W as
functions of geodesic distances one can show that 𝛿𝜖IK = 0 under
the shift of the patch Y 1 → Y 1 + 𝜖. Moreover, one can map
IK (X1, . . . ,Xn) to the loop integral in the Matsubara technique by
deforming contours in the complex plane of Y 0.
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Half of Minkowski space-time vs. Ringler wedge

Consider the same integral over a half, Y 0 > −Y 1, of Minkowski
space-time:

IK (X1, . . . ,Xn) =

∫︁
ddY 𝜃(Y 1 + Y 0)×

×

⎡⎣ k∏︁
j=1

F (Y ,Xj)
n∏︁

j=k+1

W̄ (Y ,Xj)−
k∏︁

j=1

W (Y ,Xj)
n∏︁

j=k+1

F̄ (Y ,Xj)

⎤⎦ .
One can map such an integral even more straightforwardly to the
loop integral in the Matsubara technique by deforming contours in
the complex plane of Y 0. Recall light-cone quantization.

But due to causality property of the Schwinger-Keldysh technique
such a loop integral for the points sitting in the Rindler wedge is
equivalent to the integral over the wedge only.
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Other wedges of Minkowski space-time

The situation in the left Rindler wedge is the same as in the
right one. This wedge resides in the other half of entire
Minkowski space-time;
Due to causality property of the Schwinger-Keldysh
technique the situation in the lower or past wedge, Y 0 < |Y 1|,
is the same as in the entire Minkowski space-time;
The situation in the upper or the future wedge, Y 0 > |Y 1|,
is very much different:

IK (X1, . . . ,Xn) =

∫︁
ddY 𝜃(Y 0 − Y 1)𝜃(Y 0 + Y 1)×⎡⎣ k∏︁

j=1

F (Y ,Xj)
n∏︁

j=k+1

W̄ (Y ,Xj)−
k∏︁

j=1

W (Y ,Xj)
n∏︁

j=k+1

F̄ (Y ,Xj)

⎤⎦ .
And 𝛿𝜖I ̸= 0, because contours do not close.
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A simple tree-level example in the future wedge

Let us treat the mass term m2𝜑2

2 as the perturbation in the
massless theory. Then the first correction to the propagator
in the entire Minkowski space-time in the Feynman
technique is as follows:

F
(1)
M (0,X ) = −im2

∫︁
d4Y

1
(Y 2 − i𝜖)((Y − X )2 − i𝜖)

.

where X𝜇 = (t, 0, 0, 0).
While in the future wedge the correction is:

F
(1)
F (0,X ) = 2𝜋m2

∫︁
|Y 1|<Y 0<t

d4Y
𝛿[(Y − X )2]

(Y 2 − i𝜖)
.

The results are

F
(1)
M (0,X ) = −𝜋2m2 log

Λ2

−t2
, F

(1)
F (0,X ) = i𝜋3m2.

Metric in the future wedge ds2
F = e2𝜏 (d𝜏2 − d𝜉2)− (dX a)2. 14 / 17



Various patches of the de Sitter space-time

In the expanding Poincare patch, Y d > −Y 0, which is a
half of entire de Sitter space-time with the metric
ds2 = d𝜏2 − e2𝜏 (dx i )2, for the Bunch-Davies state the
situation is similar to the one in the half of Minkowski
space-time. For such a state the propagators are maximally
analytic functions in the complex plane of the geodesic
distance.
In the static patch, Y d > |Y 0|, which is quarter of the entire
de Sitter space-time with the static metric
ds2 = sin2 𝜃 dt2 − d𝜃2 − cos2 𝜃 dΩ2

d−2, for the Bunch-Davies
state the situation is similar to the one in the right Rindler
wedge.
In the contracting Poincare patch and in the global
(entire) de Sitter space-time the situation is very much
different. Somewhat similar to the future wedge, but with
certain differences.
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In contracting Poincare patch of de Sitter space–time

The contracting Poincare patch, ds2 = d𝜏2 − e−2𝜏 dx⃗2, is
the time reversal of the expanding Poincare patch.
Now in the loops one sees the secular divergences:

𝜆2 log
(︁

p et

p et0

)︁
∼ 𝜆2 (t − t0) p et < m,

𝜆2 log
(︁

𝜇
p et0

)︁
p et > m.

Loop corrected propagator is not a function of the geodesic
distance anymore. For any initial state!
Global de Sitter contains both expanding and contracting
patches simultaneously. The situation there is similar to the
one in contracting patch.
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Conclusions

Thus, even for Poincare and de Sitter invariant initial states one
can encounter IR problems and the violation of the isometry in the
loops in various patches of Minkowski and de Sitter space-times.

THANKS!
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