Shapovalov elements for classical and quantum groups

Андрей Мудров

Centre for Fundamental Mathematics, MIPT,

October 13, 2022

MQFT2022, St.-Petersburg

Based on arXiv:2202.06220.

Setup

Let $\mathfrak{g} = \mathfrak{g}_- \oplus \mathfrak{h} \oplus \mathfrak{g}_+$ be simple complex Lie algebra

 $U = U_q(\mathfrak{g})$ be its quantized universal enveloping algebra

 $U \simeq U^- \otimes U^0 \otimes U^+$ (triangular decomposition)

where
$$U^\pm = U_q(\mathfrak{g}^\pm)$$
 и $U^0 = U_q(\mathfrak{h})$

 ${f R}$ is its root system

 $\mathrm{R}^+ \subset \mathrm{R}$ is set of positive root

 Π is basis of simple positive roots

$$ho = rac{1}{2} \sum_{lpha \in \mathbf{R}^+} lpha$$
, Вектор Вейля

U-modules

Let V be a U a-module

Vector $v \in V$ is of weight $\lambda \in \mathfrak{h}^*$ if

$$h\mathbf{v} = \lambda(h)\mathbf{v}, \quad \forall h \in \mathfrak{h}$$

Weight vector v is called singular (extremal) if $\mathfrak{g}_+v=0$.

V is of highest weight λ if generated by a singular vector of w. λ . Verma module V_{λ} is generated by a highest vector of weight λ freely over U^- , i.e. $U^- \simeq V_{\lambda}$.

Every module of highest weight λ if a quotient of V_{λ} .

Every singular vector in V_{λ} is a highest of a submodule.

The problem: describe explicitly singular vectors in V_{λ} De Concini-Kac-Kazhdan 'hyperplane'

$$\mathcal{P}_{\beta,m} = \{\lambda \in \mathfrak{h}^* | q^{2(\lambda + \rho, \beta^{\vee})} = q^{m(\alpha, \alpha)} \}, \quad \beta \in \mathrm{R}^+, \quad m \in \mathbb{N},$$

 V_{λ} is reducible *iff* $\lambda \in \cup_{\beta,m} \mathcal{P}_{\beta,m}$.

Let $\lambda \in \mathcal{P}_{eta, m}$, then there is a singular vector $v_{\lambda-meta} \in V_{\lambda}$,

$$v_{\lambda-m\beta}= heta_{eta,m}v_{\lambda},\quad heta_{eta,m}\in U^-\simeq V_{\lambda}.$$

If $\beta \in \Pi$ (simple), then $\theta_{\beta,m} = f_{\beta}^m$ (where f_{β} is root vector).

- Bernstein-Gelfand-Gelfand (1971) (reduction to products of θ_{β,m})
- Malikov-Feigin-Fuchs (1986) (description of θ_{β,m} via an interpolation procedure)
- ► Zhelobenko (1990) (factorization of $\theta_{\beta,m} = \theta_{\beta,1}^m$)
- Musson (2017) (Lie super algebras)
- ► A.M. (2015) $(U_q(\mathfrak{sl}(n)))$

"Adjoint" U-module and its Hasse diagram

Let $\xi \in \mathrm{R}^+$ be maximal root.

Let $\tilde{\mathfrak{g}}$ be fin.dim *U*-module of h.w. ξ

Let V denote U^+ -module $\tilde{\mathfrak{g}}/\tilde{\mathfrak{g}}_+$.

$$V[-\alpha] \simeq \mathbb{C} \text{ if } \alpha \in \mathrm{R}^+ \text{ and } V[0] \simeq \mathfrak{h}.$$

Basis in V:

 $F_{\alpha} \in V[-\alpha]$ with $\alpha \in \mathbb{R}^+$ and $H_{\alpha} = e_{\alpha} \cdot F_{\alpha} \in V[0]$ with $\alpha \in \Pi$

Hasse diagram $\mathfrak{H}(V)$ associated with V

Nodes are basis elements of V.

• Arrow from node a to node b is $\alpha \in \Pi$ if $e_{\alpha}a \propto b$.

Example of Hasse diagram $\mathfrak{H}(V)$ $\mathfrak{g} = \mathfrak{sl}(4)$

э

Builing bricks

Let
$$\hat{\mathcal{R}} = q^{-\sum_i h_i \otimes h_i} \mathcal{R} \in U^+ \otimes U^-$$
 be Cartan-cut R-matrix.

Set
$$\mathcal{C} = rac{1}{q-q^{-1}}(\hat{\mathcal{R}}-1\otimes 1), \qquad \lim_{q o 1}\mathcal{C} = \sum_{lpha\in\mathrm{R}^+} e_lpha\otimes f_lpha$$

Put $C = (\pi \otimes \mathrm{id})(C) \in \mathrm{End}(V) \otimes U^-$.

For each
$$\mu\in \mathfrak{h}^*$$
 put $h_\mu\in \mathfrak{h}$ s.t. $\lambda(h_\mu)=(\lambda,\mu)$, $orall\lambda\in h^*.$

For each weight $\mu \in \Gamma_+ = \mathbb{Z}_+ \Pi$ put

$$\eta_{\mu} = h_{\mu} + (\mu, \rho) - \frac{1}{2}(\mu, \mu) \in \mathfrak{h} \oplus \mathbb{C}.$$
(1)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Set $[z]_q = rac{q^z - q^{-z}}{q - q^{-1}}$

Shapovalov elements of degree 1

Write $\mu \prec \nu$ for $\mu, \nu \in \mathbb{R}^+$ if $F_{\mu} \succ F_{\nu}$.

Suppose that $\alpha \in \Pi$ and $\beta \in \mathbb{R}^+$ are such that $\alpha \prec \beta$. Define

$$heta_{eta,lpha}=c_{ij}+\sum_{k\geqslant 1}\sum_{lpha\preceq\gamma_k\prec\ldots\prec\gamma_1\preceta}c_{ik}\ldots c_{1j}rac{(-1)^kq^{\eta_{\mu_k}}\ldots q^{\eta_{\mu_1}}}{[\eta_{\mu_k}]_q\ldots[\eta_{\mu_1}]_q},$$

where

$$\begin{split} \mathbf{v}_i &= H_{\alpha}, \ \mathbf{v}_j = F_{\beta}, \\ \mathbf{v}_m &= F_{\gamma_m} \text{ with } \alpha \preceq \gamma_m \prec \beta \\ \mu_m &= \beta - \gamma_m, \ m = 1, \dots, k-1. \\ \mu_k &= \gamma_k. \end{split}$$

Factorization of Shapovalov elements

For $\nu \in \mathfrak{h}^*$ denote by $au_
u \colon U^0 o U^0$ an automorphism

$$(au_
u {\sf F})(\lambda) = arphi(\lambda+
u), \quad orall {\sf F} \in U^0, \quad \lambda \in \mathfrak{h}^*$$

<u>Theorem.</u> (A.M.,2022)

Suppose $\beta = \ell \alpha + ..., \alpha \in \Pi$ and let ω_{α} be fundamental weight. Then

- 1. $heta_eta= heta_{eta,lpha}$ is a Shapovalov element of degree 1
- 2. For all $m \in \mathbb{N}$, $\theta_{\beta,m} = (\tau_{\phi_{\alpha}}^{m-1}\theta_{\beta}) \dots (\tau_{\phi_{\alpha}}\theta_{\beta}) \theta_{\beta}$, where

$$\phi_{\alpha} = \frac{(\beta, \beta)}{\ell(\alpha, \alpha)} \omega_{\alpha}$$