Can we avoid explosions of black holes?

Irina Aref'eva

Steklov Mathematical Institute, RAS

VII International Conference "Models in Quantum Field Theory" (MQFT-2022)

> October 10-14, 2022 Saint Petersburg

Irina Aref'eva

Can we avoid explosions of black holes?

11 October 2022

1 / 30

イロト イポト イヨト イヨト 一日

Overview

1 Black hole explosion

- **2** Proposal of this talk constraints on equations of state
 - Reissner-Nordstrom, Kerr, Schwarzschild de Sitter,...
 - Does not work for Schwarzschild BH
- **8** Schwarzschild BH: new coordinates instead of Kruskal
- Explosion and information loss problem
- 6 Conclusions

Based on joint works with I. Volovich

"Complete evaporation of black holes and Page curves ", 2202.00548

"Quantum explosions of black holes and thermal coordinates", **2104.12724**

Irina Aref'eva

Can we avoid explosions of black holes?

11 October 2022

3 / 30

・ロト ・ 同ト ・ ヨト ・ ヨト

Black hole explosion

- Hawking temperature of Schwarzschild BH ${\bf T}=\frac{1}{8\pi {\bf M}},$ M is the mass of BH
- If $M \to 0$ (evaporation) then $T \to \infty$

• Energy density of radiation $E \sim \frac{1}{M^4}$ S. W. Hawking, "Black hole explosions?"Nature, v.248 (1974), 30.

Complete evaporation of BH

- Quantum gravity, Planck scale, Modified gravity,...
- Complete evaporation:
 - Hawking, Page, Susskind, Maldacena,...
 - This talk based on 2202.00548 & 2104.12724
- Semiclassical effective theory

・ロト ・ 同ト ・ ヨト ・ ヨト

Proposal of this talk - constraints

• Reissner-Nordstrom, Schwarzschild de Sitter, ...

• Special form of the state equations:

Special charge dependence on BH mass

• Schwarzschild BH

- open problem
- new thermal coordinates

Irina Aref'eva

Can we avoid explosions of black holes?

11 October 2022

6 / 30

Hawking temperature of Black Hole

$$\begin{split} \mathbf{ds^2} &= -\mathbf{f}(\mathbf{r})\mathbf{dt^2} + \mathbf{f}(\mathbf{r})^{-1}\mathbf{dr^2} + \mathbf{r^2}\mathbf{d\Omega^2} \\ & \mathbf{f}(\mathbf{r_h}) = \mathbf{0}, \qquad \mathbf{f}'(\mathbf{r_h}) \neq \mathbf{0} \end{split}$$

Hawking temperature

$$\mathbf{T} = \frac{1}{4\pi} \mathbf{f}'(\mathbf{r_h})$$

$$\mathbf{f} = \mathbf{1} - \frac{\mathbf{2M}}{\mathbf{r}}, \qquad \mathbf{r_h} = \mathbf{2M}, \qquad \mathbf{T} = \frac{1}{8\pi \mathbf{M}}$$

• There is the Big Explosion problem with the completely evaporated Schwarzschild black holes.

Irina Aref'eva

(本間) (本語) (本語) (語)

Reissner-Nordstrom BH

• Reissner-Nordstrom black hole

$$\begin{split} \mathbf{ds^2} &= -\mathbf{f}(\mathbf{r})\mathbf{dt^2} + \mathbf{f}(\mathbf{r})^{-1}\mathbf{dr^2} + \mathbf{r^2}\mathbf{d\Omega^2} \\ \mathbf{f}(\mathbf{r}) &= (\mathbf{1} - \frac{\mathbf{2M}}{\mathbf{r}} + \frac{\mathbf{Q^2}}{\mathbf{r^2}}) = (\mathbf{r} - \mathbf{r}_+)(\mathbf{r} - \mathbf{r}_-)/\mathbf{r^2} \end{split}$$

• horizons
$$\mathbf{r}_{\pm}=\mathbf{M}\pm\sqrt{\mathbf{M^2}-\mathbf{Q^2}}$$

• temperature

$$\mathbf{T} = \frac{1}{4\pi} \mathbf{f}'(\mathbf{r}_+) = \frac{1}{2\pi} \frac{\sqrt{\mathbf{M}^2 - \mathbf{Q}^2}}{(\mathbf{M} + \sqrt{\mathbf{M}^2 - \mathbf{Q}^2})^2}$$

• Kretschmann scalar

$$K_{RN} = \frac{48M^2}{r^6} \left(1 + \frac{2Q^2}{rM} + \frac{7Q^4}{48r^2M^2}\right)$$

Irina Aref'eva

Can we avoid explosions of black holes?

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ うんで

Main result

• A scenario to avoid the BH explosion is proposed.

• We propose to use special EOS (Equations Of State), i.e. special relations of M with other parameters.

3 N K 3 N

RN black hole under constraint

• We take the charge in the form

 $\mathbf{Q^2} = \mathbf{M^2} - \lambda(\mathbf{M})^2$

where $\lambda(M)$ is some given function, $0 < \lambda(M) < M$.

• The Hawking temperature T becomes

$$\mathbf{T} = \frac{\lambda(\mathbf{M})}{2\pi(\mathbf{M} + \lambda(\mathbf{M}))^2}$$

- If we take $\lambda(M)$ such that for small M it obeys $\lambda(\mathbf{M}) = \mathbf{o}(\mathbf{M}^2)$, then T tends to 0 as $\mathbf{M} \to \mathbf{0}$ and we get the complete evaporation of BH without $T \to \infty$ at the end of evaporation.
- Hence, for small M the evaporating black hole should be in the near extremal state.

RN under constraint. Curves σ_{γ} on surface Σ

• $T = \frac{1}{2\pi} \frac{\sqrt{M^2 - Q^2}}{(M + \sqrt{M^2 - Q^2})^2}$ defines surface Σ in (M, Q, T)-space.

• Constraint $Q^2 = M^2 - \lambda(M)^2$. We take $\lambda(M) = CM^{\gamma}$ (*)

• $T \to \infty$ as $M \to 0$ for $\gamma < 2$,

•
$$T \to const \neq 0$$
 as
 $M \to 0$ for $\gamma = 2$

• $T \to 0$ as $M \to 0$ for $\gamma > 2$

Thermodynamics of RN BHs

• Temperature

$$T = \frac{\lambda(M)}{2\pi(M + \lambda(M))^2}.$$

• Entropy

$$S_{RN} = \pi r_+^2 = \pi (M + \lambda(M))^2$$

• Free energy

$$G_{RN} = M - TS = M - \frac{1}{2}\lambda(M)$$

• entropy S_{RN} and free energy G_{RN} go to 0 as $M \to 0$ for λ satisfying

$$\mathbf{0} < \lambda(\mathbf{M}) \leq \mathbf{C}\mathbf{M}^{\gamma}, \quad \mathbf{C} > \mathbf{0}, \ \gamma > \mathbf{2}$$

Mass dependence of Q, T, S_R, S_{BH} and F at $\lambda(M) = (M/\mu)^{\gamma}$ with different γ

Can we avoid explosions of black holes?

11 October 2022

Explosion and information loss problem

- The information loss problem can be formulated as follows:
 - If the Schwarzschild black hole is formed from a pure quantum state and then evaporates completely, this means

|pure state $> \rightarrow |$ mixed temperature state of radiation>

Information paradox appears when BH complete evaporates

• The entropy of the initial pure quantum state is zero while entropy of the final radiation state is infinity.

イロト イヨト イヨト イヨト ヨー つなら

Black Hole Explosions Problem and Information Paradox

- The information loss problem (Hawking, 1976) is closely related to the Black Hole Explosions Problem, since the radiation entropy S_R diverges for small M as M^{-3} .
- Alternative: the evaporation is incomplete and it stops when the Schwarzschild radius is close to the Planck length.

However, Hawking and Page considered complete evaporation process.

Time evolution of RN BH under constraint

• The loss of the mass and charge during evaporation of RN black hole is a subject of numerous consideration Gibbons, Zaumen, Carter, Damour, Page'76, Hiscock'90, Gabriel'00, Sorkin'01,...

$$\frac{\mathrm{d}\mathbf{M}}{\mathrm{d}\mathbf{t}} = -\mathbf{A}\sigma\mathbf{T}^{\mathbf{4}} + \frac{\mathbf{Q}}{\mathbf{r}_{+}}\frac{\mathrm{d}\mathbf{Q}}{\mathrm{d}\mathbf{t}},$$

- A is a positive constant and the cross-section σ is proportional to M^2 for small M
- in the second term

Irina Aref'e

$$\frac{\mathrm{d}\mathbf{Q}}{\mathrm{d}\mathbf{t}} = \frac{\mathrm{d}}{\mathrm{d}\mathbf{t}}\sqrt{\mathbf{M}^2 - \lambda^2} = \frac{\mathbf{M} - \lambda\lambda'}{\sqrt{\mathbf{M}^2 - \lambda^2}} \frac{\mathrm{d}\mathbf{M}}{\mathrm{d}\mathbf{t}}$$

0

Time evolution of RN BH under constraint

• For $\lambda(M) = CM^{\gamma}$ and small M one gets $\frac{dM}{dt} = -C_1 M^{3\gamma-5}(*)$

• (*) for $\gamma > 2$ and $M(0) = M_0$ has a solution

$$\mathbf{M}(\mathbf{t}) = \frac{\mathbf{M_0}}{(1 + \mathbf{B} \, \mathbf{t})^{\frac{1}{3(\gamma - 2)}}}, \quad \mathbf{B} = \frac{3(\gamma - 2)\mathbf{C_1}}{\mathbf{M_0^{6 - 3\gamma}}}, \quad \gamma > \mathbf{2},$$

 M_0 and B are positive constants

- (*) for $\gamma = 2$ has solution $M(t) = M_0 e^{-C_1 t}$
 - i.e. one gets an infinite large time of the complete evaporation of charged black hole under our constraint.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のなび

Schwarzschild Black Hole Problems with Kruskal coordinates for $M \rightarrow 0$

$$ds^{2} = -f(r)dt^{2} + f(r)^{-1}dr^{2} + r^{2}d\Omega^{2}$$

Schwarzschild $f(r) = 1 - \frac{2M}{r}, M \to 0$ - OK

Surface gravity $\tau_g = \frac{1}{2} |f'(r_h)| = \frac{1}{4M}$ - diverges as $M \to 0$

Tortoise coordinate r_* : $dr_* = \frac{dr}{f(r)}$ $u = t - r_*$, $v = t + r_*$

Kruskal coordinates: $U = -e^{-\tau_g u} = e^{-\frac{u}{4M}}, V = e^{v/4M}.$

- Advantage: Kruskal coordinates describe Kruskal (Szekeres) extension that is a maximal, analytic, simply connected vacuum solution
- Disadvantage: Kruskal coordinates are singular in the limit $M \rightarrow 0$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ つくつ

New coordinates

• To improve the situation, new coordinates $\mathscr U$ and $\mathscr V$ for the Schwarzschild metric are introduced,

$$\mathscr{U} = -e^{-\frac{u}{4M+b}}, \quad \mathscr{V} = e^{\frac{v}{4M+b}},$$

which depend on the black hole mass M and a parameter b > 0.

This parameter b sets the observer's motion along a special trajectory - for explanation see next pages

• Temperature

$$T = \frac{1}{2\pi(4M+b)}$$

• Limit $M \to 0$

$$T_0 = \frac{1}{2\pi b}$$

イロト イポト イヨト イヨト 二日

Schwarzschild metric in new coordinates

• 2-dim part of Schwarzschild metric

$$ds_2^2 = -(1 - \frac{2M}{r})dudv = (4M + b)^2 (1 - \frac{2M}{r}) \frac{d\mathscr{U}d\mathscr{V}}{\mathscr{U}\mathscr{V}}, \quad r > 2M.$$
$$(r - 2M)^{\frac{M}{M+b/4}} = (2M)^{M/(M+b/4)} (-\mathscr{U}\mathscr{V})e^{-\frac{r}{2(M+b/4)}}$$

 \bullet in the limit $M \rightarrow 0$ the 2-dimensional part becomes

$$ds_2^2 = b^2 \frac{d\mathcal{U} \, d\mathcal{V}}{\mathcal{U}\mathcal{V}}, \qquad r = b/2\log(-\mathcal{U}\mathcal{V})$$

r > 0 corresponds to $-\mathcal{UV} > 1$.

20 / 30

イロト 不得 とくほと 不良 とうほ

New (thermal/exponential/quasi Kruskal) coordinates in Minkowski

• New coordinates

$$\begin{split} \mathcal{U} &= \mathcal{U}^{(R)}(t,r) = -\exp\{-\frac{u}{b}\}, \qquad u = t - r, \ b > 0, \\ \mathcal{V} &= \mathcal{V}^{(R)}(t,r) = \exp\{\frac{v}{b}\}, \qquad v = t + r \\ r &= b/2\log(-\mathcal{UV}) \qquad \text{R-region}: \mathcal{UV} < 0 \end{split}$$

• New coordinate $\mathcal{T} = \frac{\mathcal{U} + \mathcal{V}}{2}, \ \mathcal{X} = \frac{\mathcal{V} - \mathcal{U}}{2}$

 $\textbf{R-region} \hspace{.1 in} = \hspace{.1 in} \{(\mathcal{T},\mathcal{X}) \in \mathbb{R}^2 \, | \, \mathcal{X}^2 - \mathcal{T}^2 > 0, \mathcal{X} > 0 \}$

• Similarity with Rindler coordinates (see below)

Irina Aref'eva

11 October 2022 21 / 30

・ロト ・日 ・ ・ ヨ ・ ・ ヨ ・ うへつ

New coordinates in Minkowski

11 October 2022 22 / 30

New coordinates in Minkowski.

Irina Aref'eva

Can we avoid explosions of black holes?

New coordinates in Minkowski. Geodesics

Metric: $ds_2^2 = b^2 \frac{d\mathcal{U} d\mathcal{V}}{\mathcal{U}\mathcal{V}}$

Geodesics eqs.: $\mathcal{V}'(\mathfrak{s})^2 - \mathcal{V}(\mathfrak{s})\mathcal{V}''(\mathfrak{s}) = 0 = \mathcal{U}'(\mathfrak{s})^2 - \mathcal{U}(\mathfrak{s})\mathcal{U}''(\mathfrak{s})$

Geodesics cannot cross the light-cone with vertex at O_{\pm}

Irina Aref'eva

Can we avoid explosions of black holes?

24 / 30

11 October 2022

New coordinates in Minkowski. Acceleration

The "lift" $\mathcal{X} = \mathcal{X}_0$

The proper time
$$d\tau = \frac{4b}{\sqrt{x_0^2 - \tau^2}} d\mathcal{T}$$
 $\mathcal{T} = \pm \mathcal{X}_0 \sin\left(\frac{\tau - \tau_0}{b}\right)$
 $t = b \arctan\left(\sin\left(\frac{\tau - \tau_0}{b}\right)\right)$
 $r = \frac{b}{2} \log\left(\mathcal{X}_0^2 \cos^2\left(\frac{\tau - \tau_0}{b}\right)\right)$
 $r = \frac{b}{2} \log\left(\mathcal{X}_0^2 \cos^2\left(\frac{\tau - \tau_0}{b}\right)\right)$
 $V^0 = \frac{dt}{d\tau} = \frac{\mathcal{X}_0}{\sqrt{\mathcal{X}_0^2 - \tau^2}}$
 $V^1 = \frac{dx}{d\tau} = \frac{\mathcal{T}}{\sqrt{\mathcal{X}_0^2 - \tau^2}}$
 $W^0 = \frac{dV^0}{d\tau} = \frac{\mathcal{X}_0\mathcal{T}}{b(\mathcal{X}_0^2 - \tau^2)}$ $W^1 = \frac{dV^1}{d\tau} = \frac{\mathcal{X}_0^2}{b(\mathcal{X}_0^2 - \tau^2)}$
 $W^0 = \frac{dV^0}{d\tau} = \frac{\mathcal{X}_0\mathcal{T}}{b(\mathcal{X}_0^2 - \tau^2)}$ $W^2 = -(W^0)^2 + (W^1)^2$
 $= \frac{\mathcal{X}_0^2}{b^2(\mathcal{X}_0^2 - \tau^2)}$
 $W^2 = -(W^0)^2 + (W^1)^2$
 $W^2 = -(W^0)^2 + (W^1)^2$
 $W^2 = \frac{\mathcal{X}_0^2}{b^2(\mathcal{X}_0^2 - \tau^2)}$

Comparison with Rindler coordinates

An observer traveling in Minkowski with constant acceleration a is described by the Rindler coordinates (ν, ϑ)

$$\begin{split} u &= -\frac{1}{a}e^{-a\nu}, \quad u &= t-x, \qquad v = t+x, \\ v &= \frac{1}{a}e^{a\vartheta}, \qquad \nu &= \eta - \xi, \qquad \vartheta = \eta + \xi \quad a > 0 \end{split}$$

The Rindler observer is "at rest" in Rindler coordinates and travels along the hyperbola in $uv = e^{\xi_0}$ in the inertial coordinates (t, x)

イロト イヨト イヨト イヨト

New coordinates for general f(r)

• Metric $ds^2 = -f(r)dt^2 + f(r)^{-1}dr^2 + r^2 d\Omega^2$ f(r)-general blackening function, $r_*(r) = \int \frac{dr}{f(r)}$

$$\bullet \ {\mathscr U} = -e^{-\frac{u}{B}}, \quad {\mathscr V} = e^{\frac{v}{B}}, \quad B > 0,$$

- Metric $ds_2^2 = -f(r)dudv = f(r)B^2 \frac{d\mathcal{U}d\mathcal{V}}{\mathcal{U}\mathcal{V}} = f(r)B^2 \frac{-d\mathcal{T}^2 + d\mathcal{X}^2}{-\mathcal{T}^2 + \mathcal{X}^2}$
- r is implicitly defined by $e^{2r_*/B} = -\mathscr{U}\mathscr{V}$
- temperature $T = \frac{1}{2\pi B}$
- \bullet acceleration along trajectory $\mathscr{X}=\mathscr{X}_0$

$$w^{2} = -f(w^{0})^{2} + f^{-1}(w^{1})^{2} = \frac{1}{f} \left(\frac{f'}{2} - \frac{1}{B}\right)^{2} \cdot \frac{\mathscr{X}_{0}^{2}}{\mathscr{X}_{0}^{2} - \mathscr{T}^{2}}$$

Acceleration along trajectory $\mathscr{X} = \mathscr{X}_0$ in Schwarzschild metric

•
$$\mathscr{T}^2 = \mathscr{X}_0^2 - e^{2r/B} \left(\frac{r}{2M} - 1\right)^{4M/B}$$

Acceleration

$$w^{2} = \frac{\mathscr{X}_{0}^{2} \left(\frac{1}{B} - \frac{M}{r^{2}}\right)^{2}}{1 - \frac{2M}{r}} e^{-2r/B} \left(\frac{r}{2M} - 1\right)^{-4M/B}$$

- We see that for B < 4M the acceleration is ∞ at $z_h = 2M$
- For B = 4M the acceleration at $z_h = 2M$ is related with the surface gravity $\kappa = 1/4M$,

$$w^2|_{r=r_h} = \frac{4\mathscr{X}_0^2}{e}\kappa^2$$

• For B > 4M the acceleration near $z_h = 2M$ is ∞ and $\rightarrow 0$ at $r = r_0 = \sqrt{BM}$

・ロト ・ 同ト ・ ヨト ・ ヨト

Conclusions

- The problems of the BH explosion of completely evaporating black holes is considered.
- It is shown that the constraint permits to avoid the RN BH explosion.

- Similar results are obtained for Kerr and Schwarzschild-de Sitter black holes.
- Problem with Kruskal coordinates for small mass are indicated and new thermal coordinates are suggested

イロト イポト イヨト イヨト 二日

Thank you !

Irina Aref'eva

Can we avoid explosions of black holes?

 < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

 les?
 11 October 2022

30 / 30