Can we avoid explosions of black holes?

Irina Aref'eva

Steklov Mathematical Institute, RAS

VII International Conference
"Models in Quantum Field Theory" (MQFT-2022)

October 10-14, 2022
Saint Petersburg

Overview

(1) Black hole explosion
(2) Proposal of this talk - constraints on equations of stat

- Reissner-Nordstrom, Kerr, Schwarzschild de Sitter,...
- Does not work for Schwarzschild BH
(3) Schwarzschild BH: new coordinates instead of Kruskal
(4) Explosion and information loss problem
(5) Conclusions

Based on joint works with I. Volovich

"Complete evaporation of black holes and Page curves ", 2202.00548
"Quantum explosions of black holes and thermal coordinates", 2104.12724

Black hole explosion

- Hawking temperature of Schwarzschild BH

$$
\mathrm{T}=\frac{1}{8 \pi \mathrm{M}},
$$

M is the mass of BH

- If $\mathrm{M} \rightarrow \mathbf{0}$ (evaporation) then $\mathbf{T} \rightarrow \infty$
- Energy density of radiation

$$
\mathrm{E} \sim \frac{1}{\mathrm{M}^{4}}
$$

S. W. Hawking, "Black hole explosions?"Nature, v. 248 (1974), 30.

Complete evaporation of BH

- Quantum gravity, Planck scale, Modified gravity,...
- Complete evaporation:

Hawking, Page, Susskind, Maldacena,...

This talk based on $2202.00548 \& 2104.12724$

- Semiclassical effective theory

Proposal of this talk - constraints

- Reissner-Nordstrom, Schwarzschild de Sitter, ...
- Special form of the state equations:

Special charge dependence on BH mass

- Schwarzschild BH
- open problem
- new thermal coordinates

Hawking temperature of Black Hole

$$
\begin{gathered}
\mathrm{ds}^{2}=-\mathbf{f}(\mathbf{r}) \mathrm{dt}^{2}+\mathbf{f}(\mathbf{r})^{-1} \mathrm{dr}^{2}+\mathbf{r}^{2} \mathrm{~d} \Omega^{2} \\
\mathbf{f}\left(\mathbf{r}_{\mathbf{h}}\right)=\mathbf{0}, \quad \mathbf{f}^{\prime}\left(\mathbf{r}_{\mathrm{h}}\right) \neq \mathbf{0}
\end{gathered}
$$

Hawking temperature

$$
\mathbf{T}=\frac{1}{4 \pi} \mathbf{f}^{\prime}\left(\mathbf{r}_{\mathbf{h}}\right)
$$

$$
\mathrm{f}=1-\frac{2 \mathrm{M}}{\mathrm{r}}, \quad \mathrm{r}_{\mathrm{h}}=2 \mathrm{M}, \quad \mathrm{~T}=\frac{1}{8 \pi \mathrm{M}}
$$

- There is the Big Explosion problem with the completely evaporated Schwarzschild black holes.

Reissner-Nordstrom BH

- Reissner-Nordstrom black hole

$$
\begin{gathered}
\mathrm{ds}^{2}=-\mathbf{f}(\mathbf{r}) \mathrm{dt}^{2}+\mathbf{f}(\mathbf{r})^{-1} \mathrm{dr}^{2}+\mathbf{r}^{2} \mathrm{~d} \Omega^{2} \\
\mathbf{f}(\mathbf{r})=\left(\mathbf{1}-\frac{2 \mathbf{M}}{\mathbf{r}}+\frac{\mathbf{Q}^{2}}{\mathbf{r}^{2}}\right)=\left(\mathbf{r}-\mathbf{r}_{+}\right)\left(\mathbf{r}-\mathbf{r}_{-}\right) / \mathbf{r}^{2}
\end{gathered}
$$

- horizons $\mathbf{r}_{ \pm}=\mathbf{M} \pm \sqrt{\mathbf{M}^{2}-\mathbf{Q}^{2}}$
- temperature

$$
\mathbf{T}=\frac{1}{4 \pi} \mathbf{f}^{\prime}\left(\mathbf{r}_{+}\right)=\frac{1}{2 \pi} \frac{\sqrt{\mathbf{M}^{2}-\mathbf{Q}^{2}}}{\left(\mathrm{M}+\sqrt{\mathbf{M}^{2}-\mathbf{Q}^{2}}\right)^{2}}
$$

- Kretschmann scalar

$$
K_{R N}=\frac{48 M^{2}}{r^{6}}\left(1+\frac{2 Q^{2}}{r M}+\frac{7 Q^{4}}{48 r^{2} M^{2}}\right)
$$

Main result

- A scenario to avoid the BH explosion is proposed.
- We propose to use special EOS (Equations Of State), i.e. special relations of M with other parameters.

RN black hole under constraint

- We take the charge in the form

$$
\mathbf{Q}^{2}=\mathbf{M}^{2}-\lambda(\mathbf{M})^{2}
$$

where $\lambda(M)$ is some given function, $0<\lambda(M)<M$.

- The Hawking temperature T becomes

$$
\mathbf{T}=\frac{\lambda(\mathbf{M})}{2 \pi(\mathrm{M}+\lambda(\mathrm{M}))^{2}}
$$

- If we take $\lambda(M)$ such that for small M it obeys $\lambda(\mathrm{M})=\mathrm{o}\left(\mathrm{M}^{2}\right)$, then T tends to 0 as $\mathrm{M} \rightarrow 0$ and we get the complete evaporation of BH without $T \rightarrow \infty$ at the end of evaporation.
- Hence, for small M the evaporating black hole should be in the near extremal state.

RN under constraint. Curves σ_{γ} on surface Σ

- $\mathrm{T}=\frac{1}{2 \pi} \frac{\sqrt{\mathrm{M}^{2}-\mathrm{Q}^{2}}}{\left(\mathrm{M}+\sqrt{\mathrm{M}^{2}-\mathrm{Q}^{2}}\right)^{2}}$ defines surface Σ in (M, Q, T)-space.
- Constraint $\mathrm{Q}^{2}=\mathrm{M}^{2}-\lambda(\mathbf{M})^{2}$. We take $\lambda(\mathrm{M})=\mathrm{CM}^{\gamma}$

- $T \rightarrow \infty$ as $M \rightarrow 0$ for $\gamma<2$,
- $T \rightarrow$ cons $\neq 0$ as

$M \rightarrow 0$ for $\gamma=2$
- $T \rightarrow 0$ as $M \rightarrow 0$ for
$\gamma>2$

Thermodynamics of RN BHs

- Temperature

$$
T=\frac{\lambda(M)}{2 \pi(M+\lambda(M))^{2}}
$$

- Entropy

$$
S_{R N}=\pi r_{+}^{2}=\pi(M+\lambda(M))^{2}
$$

- Free energy

$$
G_{R N}=M-T S=M-\frac{1}{2} \lambda(M)
$$

- entropy $S_{R N}$ and free energy $G_{R N}$ go to 0 as $M \rightarrow 0$ for λ satisfying

$$
\mathbf{0}<\lambda(\mathbf{M}) \leq \mathbf{C M}^{\gamma}, \quad \mathbf{C}>\mathbf{0}, \gamma>\mathbf{2}
$$

Mass dependence of $Q, T, S_{R}, S_{B H}$ and F at

 $\lambda(M)=(M / \mu)^{\gamma}$ with different γ

- for all $\gamma>1^{0.2}$ there is a restriction on $M, M^{0.0} \leq 1$
- T and S_{R} at $\gamma>2$ starting from $M=1$, increase to a certain maximum value, then decrease to zero, i.e. the mass dependencies - deformed bell shapes
- for $\gamma=2 T \rightarrow T_{0} \neq 0$ as $M \rightarrow 0$
- for $\gamma<2 T, S_{R} \rightarrow \infty$
- $S_{B H}$ and F tend to zero at $M \rightarrow 0$ for all values of γ
- F first increases as the black hole mass decreases, but after some M_{0} starts to decrease

Explosion and information loss problem

- The information loss problem can be formulated as follows:
- If the Schwarzschild black hole is formed from a pure quantum state and then evaporates completely, this means
\mid pure state $>\rightarrow \mid$ mixed temperature state of radiation $>$
Information paradox appears when BH complete evaporates
- The entropy of the initial pure quantum state is zero while entropy of the final radiation state is infinity.

Black Hole Explosions Problem and Information Paradox

- The information loss problem (Hawking, 1976) is closely related to the Black Hole Explosions Problem, since the radiation entropy S_{R} diverges for small M as M^{-3}.
- Alternative: the evaporation is incomplete and it stops when the Schwarzschild radius is close to the Planck length.

However, Hawking and Page considered complete evaporation process.

Time evolution of RN BH under constraint

- The loss of the mass and charge during evaporation of RN black hole is a subject of numerous consideration

Gibbons, Zaumen, Carter, Damour, Page'76, Hiscock'90, Gabriel'00, Sorkin'01,...

$$
\frac{\mathrm{dM}}{\mathrm{dt}}=-\mathbf{A} \sigma \mathrm{T}^{4}+\frac{\mathrm{Q}}{\mathrm{r}_{+}} \frac{\mathrm{dQ}}{\mathrm{dt}},
$$

- A is a positive constant and the cross-section σ is proportional to M^{2} for small M
- in the second term

$$
\frac{\mathrm{dQ}}{\mathrm{dt}}=\frac{\mathrm{d}}{\mathrm{dt}} \sqrt{\mathrm{M}^{2}-\lambda^{2}}=\frac{\mathrm{M}-\lambda \lambda^{\prime}}{\sqrt{\mathrm{M}^{2}-\lambda^{2}}} \frac{\mathrm{dM}}{\mathrm{dt}}
$$

Time evolution of RN BH under constraint

- For $\lambda(M)=C M^{\gamma}$ and small M one gets $\frac{d M}{d t}=-C_{1} M^{3 \gamma-5}(*)$
- (*) for $\gamma>2$ and $M(0)=M_{0}$ has a solution

$$
\mathbf{M}(\mathrm{t})=\frac{\mathrm{M}_{0}}{(1+\mathrm{B} t)^{\frac{1}{3(\gamma-2)}}}, \quad \mathbf{B}=\frac{3(\gamma-2) \mathrm{C}_{1}}{\mathrm{M}_{0}^{6-3 \gamma}}, \quad \gamma>2,
$$

M_{0} and B are positive constants

- (*) for $\gamma=2$ has solution $\mathbf{M}(\mathbf{t})=\mathbf{M}_{\mathbf{0}} \mathrm{e}^{-\mathrm{C}_{\mathbf{1}} \mathrm{t}}$
- i.e. one gets an infinite large time of the complete evaporation of charged black hole under our constraint.

Schwarzschild Black Hole

Problems with Kruskal coordinates for $M \rightarrow 0$

$$
d s^{2}=-f(r) d t^{2}+f(r)^{-1} d r^{2}+r^{2} d \Omega^{2}
$$

Schwarzschild $f(r)=1-\frac{2 M}{r}, M \rightarrow 0$ - OK
Surface gravity $\tau_{g}=\frac{1}{2}\left|f^{\prime}\left(r_{h}\right)\right|=\frac{1}{4 M}$ - diverges as $M \rightarrow 0$
Tortoise coordinate $r_{*}: d r_{*}=\frac{d r}{f(r)} \quad u=t-r_{*}, \quad v=t+r_{*}$
Kruskal coordinates: $U=-\mathbf{e}^{-\tau_{\mathbf{g}} \mathbf{u}}=\mathbf{e}^{-\frac{u}{4 \mathrm{M}}}, \quad V=\mathbf{e}^{\mathbf{v} / 4 \mathrm{M}}$.

- Advantage: Kruskal coordinates describe Kruskal (Szekeres) extension that is a maximal, analytic, simply connected vacuum solution
- Disadvantage: Kruskal coordinates are singular in the limit $M \rightarrow 0$.

New coordinates

- To improve the situation, new coordinates \mathscr{U} and \mathscr{V} for the Schwarzschild metric are introduced,

$$
\mathscr{U}=-e^{-\frac{u}{4 M+b}}, \quad \mathscr{V}=e^{\frac{v}{4 M+b}},
$$

which depend on the black hole mass M and a parameter $b>0$.
This parameter b sets the observer's motion along a special trajectory - for explanation see next pages

- Temperature

$$
T=\frac{1}{2 \pi(4 M+b)}
$$

- Limit $M \rightarrow 0$

$$
T_{0}=\frac{1}{2 \pi b}
$$

Schwarzschild metric in new coordinates

- 2-dim part of Schwarzschild metric

$$
\begin{aligned}
d s_{2}^{2}= & -\left(1-\frac{2 M}{r}\right) d u d v=(4 M+b)^{2}\left(1-\frac{2 M}{r}\right) \frac{d \mathscr{U} d \mathscr{V}}{\mathscr{U} \mathscr{V}}, \quad r>2 M . \\
& (r-2 M)^{\frac{M}{M+b / 4}}=(2 M)^{M /(M+b / 4)}(-\mathscr{U} \mathscr{V}) e^{-\frac{r}{2(M+b / 4)}}
\end{aligned}
$$

- in the limit $M \rightarrow 0$ the 2-dimensional part becomes

$$
d s_{2}^{2}=b^{2} \frac{d \mathcal{U} d \mathcal{V}}{\mathcal{U} \mathcal{V}}, \quad r=b / 2 \log (-\mathcal{U} \mathcal{V})
$$

$r>0$ corresponds to $-\mathcal{U V}>1$.

New (thermal/exponential/quasi Kruskal) coordinates in Minkowski

- New coordinates

$$
\begin{array}{rlr}
\mathcal{U} & =\mathcal{U}^{(R)}(t, r)=-\exp \left\{-\frac{u}{b}\right\}, \quad u=t-r, b>0 \\
\mathcal{V} & =\mathcal{V}^{(R)}(t, r)=\exp \left\{\frac{v}{b}\right\}, \quad v=t+r \\
r & =b / 2 \log (-\mathcal{U} \mathcal{V}) \quad \text { R-region }: \mathcal{U} \mathcal{V}<0
\end{array}
$$

- New coordinate $\mathcal{T}=\frac{\mathcal{U}+\mathcal{V}}{2}, \mathcal{X}=\frac{\mathcal{V}-\mathcal{U}}{2}$

$$
\text { R-region }=\left\{(\mathcal{T}, \mathcal{X}) \in \mathbb{R}^{2} \mid \mathcal{X}^{2}-\mathcal{T}^{2}>0, \mathcal{X}>0\right\}
$$

- Similarity with Rindler coordinates (see below)

New coordinates in Minkowski

New coordinates in Minkowski.

Map of 4 copies $\mathbb{M}^{1,1}$

New coordinates in Minkowski. Geodesics

Metric:

$$
d s_{2}^{2}=b^{2} \frac{d \mathcal{U} d \mathcal{V}}{\mathcal{U} \mathcal{V}}
$$

Geodesics eqs.:

$$
\mathcal{V}^{\prime}(\mathfrak{s})^{2}-\mathcal{V}(\mathfrak{s}) \mathcal{V}^{\prime \prime}(\mathfrak{s})=0=\mathcal{U}^{\prime}(\mathfrak{s})^{2}-\mathcal{U}(\mathfrak{s}) \mathcal{U}^{\prime \prime}(\mathfrak{s})
$$

Geodesics:
in Mink.coord.:

$$
\mathcal{V}(\mathfrak{s})=c_{2} e^{c_{1} \mathfrak{s}}, \quad \mathcal{U}(\mathfrak{s})=c_{4} e^{c_{3} \mathfrak{s}}
$$

$$
\left.t(\mathfrak{s})=\frac{1}{2}\left(\mathfrak{s}\left(-c_{1}-c_{3}\right)\right)-\log \left(-\frac{c_{2}}{c_{4}}\right)\right)
$$

$$
r(\mathfrak{s})=2 b\left(\left(c_{1}+c_{3}\right) \mathfrak{s}+\log \left(-c_{2} c_{4}\right)\right)
$$

Geodesics cannot cross the light-cone with yertex at $O_{\overline{\underline{ٍ}}}$

New coordinates in Minkowski. Acceleration

The "lift" $\mathcal{X}=\mathcal{X}_{0}$
The proper time $d \tau=\frac{4 b}{\sqrt{\mathcal{X}_{0}^{2}-\mathcal{T}^{2}}} d \mathcal{T} \quad \mathcal{T}= \pm \mathcal{X}_{0} \sin \left(\frac{\tau-\tau_{0}}{b}\right)$

$$
\begin{aligned}
t & =b \operatorname{arctanh}\left(\sin \left(\frac{\tau-\tau_{0}}{b}\right)\right) \\
r & =\frac{b}{2} \log \left(\mathcal{X}_{0}^{2} \cos ^{2}\left(\frac{\tau-\tau_{0}}{b}\right)\right) \\
V^{0} & =\frac{d t}{d \tau}=\frac{\mathcal{X}_{0}}{\sqrt{\mathcal{X}_{0}^{2}-\mathcal{T}^{2}}} \\
V^{1} & =\frac{d x}{d \tau}=\frac{\mathcal{T}}{\sqrt{\mathcal{X}_{0}^{2}-\mathcal{T}^{2}}}
\end{aligned}
$$

$$
W^{0}=\frac{d V^{0}}{d \tau}=\frac{\mathcal{X}_{0} \mathcal{T}}{b\left(\mathcal{X}_{0}^{2}-\mathcal{T}^{2}\right)} \quad W^{1}=\frac{d V^{1}}{d \tau}=\frac{\mathcal{X}_{0}^{2}}{b\left(\mathcal{X}_{0}^{2}-\mathcal{T}^{2}\right)}
$$

Acceleration $W \neq$ const

$$
\begin{aligned}
W^{2} & \equiv-\left(W^{0}\right)^{2}+\left(W^{1}\right)^{2} \\
& =\frac{\mathcal{X}_{0}^{2}}{b^{2}\left(\mathcal{X}_{0}^{2}-\mathcal{T}^{2}\right)} \\
& =\frac{1}{b^{2}} \cosh ^{2} \frac{t}{b} \text { Эดc } \\
& 11 \text { October } 2022 \quad 25 / 30
\end{aligned}
$$

Comparison with Rindler coordinates

An observer traveling in Minkowski with constant acceleration a is described by the Rindler coordinates (ν, ϑ)

$$
\begin{array}{lll}
u=-\frac{1}{a} e^{-a \nu}, & u=t-x, & v=t+x \\
v=\frac{1}{a} e^{a \vartheta}, & \nu=\eta-\xi, & \vartheta=\eta+\xi \quad a>0
\end{array}
$$

The Rindler observer is "at rest"in Rindler coordinates and travels along the hyperbola in $u v=e^{\xi_{0}}$ in the inertial coordinates (t, x)

New coordinates for general $f(r)$

- Metric $d s^{2}=-f(r) d t^{2}+f(r)^{-1} d r^{2}+r^{2} d \Omega^{2}$ $f(r)$-general blackening function, $\quad r_{*}(r)=\int \frac{d r}{f(r)}$
- $\mathscr{U}=-e^{-\frac{U}{B}}, \quad \mathscr{V}=e^{\frac{v}{B}}, \quad B>0$,
- Metric $d s_{2}^{2}=-f(r) d u d v=f(r) B^{2} \frac{d \mathscr{U} d \mathscr{V}}{\mathscr{U} \mathscr{V}}=f(r) B^{2} \frac{-d \mathscr{T}^{2}+d \mathscr{X}^{2}}{-\mathscr{T}^{2}+\mathscr{X}^{2}}$
- r is implicitly defined by $e^{2 r_{*} / B}=-\mathscr{U} \mathscr{V}$
- temperature $T=\frac{1}{2 \pi B}$
- acceleration along trajectory $\mathscr{X}=\mathscr{X}_{0}$

$$
w^{2}=-f\left(w^{0}\right)^{2}+f^{-1}\left(w^{1}\right)^{2}=\frac{1}{f}\left(\frac{f^{\prime}}{2}-\frac{1}{B}\right)^{2} \cdot \frac{\mathscr{X}_{0}^{2}}{\mathscr{X}_{0}^{2}-\mathscr{T}^{2}}
$$

Acceleration along trajectory $\mathscr{X}=\mathscr{X}_{0}$ in Schwarzschild metric

- $\mathscr{T}^{2}=\mathscr{X}_{0}^{2}-e^{2 r / B}\left(\frac{r}{2 M}-1\right)^{4 M / B}$
- Acceleration

$$
w^{2}=\frac{\mathscr{X}_{0}^{2}\left(\frac{1}{B}-\frac{M}{r^{2}}\right)^{2}}{1-\frac{2 M}{r}} e^{-2 r / B}\left(\frac{r}{2 M}-1\right)^{-4 M / B}
$$

- We see that for $B<4 M$ the acceleration is ∞ at $z_{h}=2 M$
- For $B=4 M$ the acceleration at $z_{h}=2 M$ is related with the surface gravity $\kappa=1 / 4 M$,

$$
\left.w^{2}\right|_{r=r_{h}}=\frac{4 \mathscr{X}_{0}^{2}}{e} \kappa^{2}
$$

- For $B>4 M$ the acceleration near $z_{h}=2 M$ is
 ∞ and $\rightarrow 0$ at $r=r_{0}=\sqrt{B M}$

Conclusions

- The problems of the BH explosion of completely evaporating black holes is considered.
- It is shown that the constraint permits to avoid the RN BH explosion.
- Similar results are obtained for Kerr and Schwarzschild-de Sitter black holes.
- Problem with Kruskal coordinates for small mass are indicated and new thermal coordinates are suggested

Thank you !

