Lattice study of dense two-color QCD

V. V. Braguta

JINR

Models in Quantum Field Theory, 11 October, 2022

Outline:

- ▶ Introduction
 - ▶ Lattice simulation of QCD
 - ▶ Dense matter and sign problem
 - ▶ Simulation of QCD-like theories
- ► Two-color QCD at low density
- ► Moderate and large densities
- String breaking and charmonium dissociation
- ► Conclusion

Quantum chromodynamics (QCD)

QCD properties

- Degrees of freedom
 - ightharpoonup Quarks q
 - ightharpoonup Gluons A
- ▶ QCD Lagrangian

$$L = -\frac{1}{4} \sum_{a=1}^{8} F_{a}^{\mu\nu} F_{\mu\nu}^{a} + \sum_{f=u,d,s,\dots} \bar{q}_{f} (i\gamma^{\mu} \partial_{\mu} - m) q_{f} + g \sum_{f=1}^{N_{f}} \bar{q}_{f} \gamma^{\mu} \hat{A}_{\mu} q_{f}$$

- Nonlinear equations of motion with $g \sim 1$
- ▶ QCD Lagrangian is known, but observables cannot be calculated analytically
 - ▶ In particular: Cofinement from the QCD Lagrangian
 - Millenium problem

Lattice simulation of QCD

Lattice simulation

- Allows to study strongly interacting nonlinear systems
- Based on the first principles of quantum field theory
- The most powerful and perspective approach due to development of supercomputers and algorithms

Building Lattice QCD

QCD Lagrangian

- ► Introduce 4-dimensional lattice $N_s \times N_s \times N_s \times N_t = N_s^3 \times N_t$
- ightharpoonup Lattice spacing -a
- ► Degrees of freedom
 - ▶ Gluon fields: 3x3 matrix $U \in SU(3)$, links
 - **Quark fields:** q, \bar{q} , nodes

Building Lattice QCD

- One calculates QCD partition function (thermodynamic equilibrium!) $Z_l = \int DUD\bar{q}Dq \exp(-S_G(U) - \int d^4x\bar{q}(\hat{D}(U) + m)q)$
- ▶ The partition function is calculated in 3+1 Euclidean space
- ▶ In the continuum limit Z_l exactly reproduces $Z_{\text{KX},\perp}$
 - ► The gluon contribution: $S_G(U)\Big|_{a\to 0} = -\frac{1}{4}\sum_{a=1}^8 F_a^{\mu\nu}F_{\mu\nu}^a$
 - ▶ The quark contribution:

$$\bar{q}(\hat{D}(U)+m)q\bigg|_{a\to 0} = \bar{q}(\gamma^{\mu}\partial_{\mu}+ig\gamma^{\mu}A_{\mu}+m)q$$

The quark fields can be integrated out exactly $Z = \int DU \exp(-S_G(U)) \times \prod_{i=u,d,s...} \det(\hat{D}_i(U) + m_i)$

Lattice simulation of QCD

- ▶ One calculates the partition function $Z_l \sim \int DU e^{-S_G(U)} \prod_i \det(\hat{D}_i(U) + m_i) = \int DU e^{-S_{eff}(U)}$
- ▶ Hybrid Monte Carlo is used (generation of the gluon configurations with the weight $e^{-S_{eff}(U)}$)
- ightharpoonup Carry out the extrapolation $a \to 0$, $V \to \infty$
- ► The method is based on the first principles
- Exact numerical evaluation no expansion in a small parameter! No assumptions!
- ightharpoonup Parameters: g и quark masses
- ▶ Statistical and systematic (discretization and finite volume effects) uncertainties can be systematically reduced

Modern capabilities of the approach

$$Z_l \sim \int DU e^{-S_G(U)} \prod_{i=u,d,s...} \det (\hat{D}_i(U) + m_i)$$

- ► Lattices
 - $ightharpoonup 96 \times 48^3$
 - ► Integration variables: $96 \cdot 48^3 \cdot 4 \cdot 8 \sim 300 \cdot 10^6$
 - Matrices manipulation: $100 \cdot 10^6 \times 100 \cdot 10^6$
- \triangleright Calculation with dynamical u, d, s, c-quarks
- \triangleright Physical masses of the u, d, s, c quarks
- ▶ Lattice spacing up to $a \sim 0.05 \, \mathrm{fm}$

Applications

- Spectroscopy
- ► Matrix elements, correlation functions
- ► Thermodynamic properties
- ► Transport properties
- ▶ QCD phase transitions
- Nuclear physics
- ▶ QCD properties in extreme conditions (strong magnetic field, baryon density, isospin density, rotation,...)
- ▶ Topological properties and objects in QCD
- ▶ Beyond the SM at strong coupling
- **>** ...

Satellite Workshop Lattice and Functional Techniques for QCD

QCD phase diagram

QCD at finite baryon density

- ▶ Poor knowledge of dense QCD
- ▶ Phenomenological models (unknown systematic uncertainties)
- ▶ Lattice QCD (small densities $\frac{\mu}{T} < few$)

 Taylor expansion, Imaginary chemical potential,...
- ▶ QCD-like theories
 - ► SU(2) QCD (two-color) with chemical potential
 - ► SU(3) QCD isospin chemical potential

The sign problem in QCD

SU(3) QCD

- $ightharpoonup Z = \int DU \exp(-S_G) \times \det(\hat{D} + m)$
- ► Eigenvalues go in pairs \hat{D} : $\pm i\lambda \Rightarrow$ det $(\hat{D} + m) = \prod_{\lambda} (\lambda^2 + m^2) > 0$ i.e. simulations can be used
- ► Introduce chemical potential: $\det(\hat{D} + m) \to \det(\hat{D} - \mu \gamma_4 + m) \Rightarrow$ the determinant becomes complex (sign problem)

SU(2) QCD

- ► Eigenvalues go in pairs $\hat{D} \mu \gamma_4$: λ, λ^*
- For even $N_f \det(\hat{D} \mu \gamma_4 + m) > 0 \Rightarrow$ free from sign problem

Two-color QCD at finite baryon density

Why SU(2) and SU(3) at finite μ are different?

- ▶ No phase of the fermion determinant
- ▶ The Lagrangian of the SU(2) QCD has the symmetry: $SU(2N_f)$ as compared to $SU_R(N_f) \times SU_L(N_f)$ for SU(3) QCD
- Goldstone bosons $(N_f = 2) \pi^+, \pi^-, \pi^0, d, \bar{d}$
- \triangleright The baryon d is composed of two quarks, i.e. it is a boson

However, in dense medium:

► Relevant degrees of freedom are quarks and gluons rather than goldstone bosons

Two-color QCD at finite baryon density

How QCD-like theories can be used to study dense QCD

- ► Lattice study of QCD-like theories contains full dynamics of real system (contrary to phenomenological models)
- Adjust phenomenological models, check different approximations (Phys.Rev. D99 (2019) no.1, 014518)
- ▶ Study of different physical phenomena in dense medium

Small and moderate densities

Predictions of CHPT

- Due to the chiral symmetry $SU(2N_f)$ one can build CHPT for small densities
- CHPT gives reliable results
- Phase transitions can be studied for sufficiently small μ

The baryon density

- Good agreement with CHPT
- ▶ We observe BEC of diquarks (BEC phase)
- ▶ Dilute baryon gas in the region $\mu > m_{\pi}/2$
- At moderate $\mu_0 \sim 500$ MeV the deviation from CHPT is seen
- ▶ The region $\mu < \mu_0$ delute baryon gas, degrees of freedom: hadrons
- ▶ The region $\mu > \mu_0$ dense quark matter, degrees of freedom: quarks

The diquark condensate

The chiral condensate

Phase diagram for $N_c \to \infty$

- ▶ Hadron phase $\mu < M_N/N_c \ (p \sim O(1))$
- ▶ Dilute baryon gas $\mu > M_N/N_c$ (width $\delta \mu \sim \frac{\Lambda_{QCD}}{N_c^2}$)
- Quarkyonic phase $\mu > \Lambda_{QCD} \ (p \sim N_c)$
 - ▶ Degrees of freedom:
 - ▶ Baryons (on the surface)
 - Quarks (inside the Fermi sphere $|p| < \mu$)
 - No chiral symmetry breaking
 - ► The system is in confinement phase
- ▶ Deconfinement $(p \sim N_c^2)$

L. McLerran, R.D. Pisarski, Nucl. Phys. A796 (2007) 83-100

Baryon density

- ► Free quarks $n_0 = N_f \times N_c \times (2s+1) \times \int \frac{d^3p}{(2\pi)^3} \theta(|p|-\mu) = \frac{4}{3\pi^2} \mu^3$
- Quarks inside Fermi sphere
- Quarks inside Fermi sphere dominate over the surface: $\frac{4}{3}\pi\mu^3 > 4\pi\mu^2\Lambda_{QCD} \Rightarrow \mu > 3\Lambda_{QCD}$

Diquark condensate

- ▶ Bardeen–Cooper–Schrieffer (BCS) phase $\mu > 800$ MeV, $\Sigma_{qq} \sim \mu^2$
- \blacktriangleright Degrees of freedom: Cooper pairs (color-singlet diquarks qq -baryons)
- ► Baryons (on the surface)

Chiral condensate (chiral limit $m \to 0$)

No chiral symmetry breaking

▶ Baryons (on the surface)

- ▶ Baryons (on the surface)
- ▶ Quarks (inside the Fermi sphere $|p| < \mu$)

▶ Baryons (on the surface)

- \checkmark
- ▶ Quarks (inside the Fermi sphere $|p| < \mu$) ✓
- ▶ No chiral symmetry breaking

▶ Baryons (on the surface)

- \checkmark
- Quarks (inside the Fermi sphere $|p| < \mu$)
- ٠,

- ▶ No chiral symmetry breaking
- ► The system is in confinement phase

▶ Baryons (on the surface)

- \checkmark
- Quarks (inside the Fermi sphere $|p| < \mu$)
- ► No chiral symmetry breaking

 \checkmark

► The system is in confinement phase

What about confinement in cold dense quark matter?

Potential between static quark-antiquark pair

- ▶ We observe deconfinement in dense medium!
- ▶ It might be due to the finite temperature effects
- ► Still under debate

Tentative phase diagram of dense SU(2) QCD

- ▶ Low densities can be well described by CHPT (BEC phase)
- ▶ Dense matter in the region $\mu > 500$ MeV
- ▶ BCS phase take place at $\mu \sim 1$ GeV
- ▶ Relevant degrees of freedom in the region $\mu > 1$ GeV: color-singlet Cooper pairs(baryons) and quarks with $\Delta(\mu)$
- ▶ No chiral symmetry breaking in dense matter
- ▶ Deconfinement at sufficiently large density?

String breaking in dense matter

- ▶ Free energy of quark-antiquark pair $\Omega_1 \sim F_{q\bar{q}} \sim \langle P^+(r)P(0) \rangle$
- ▶ The confinement implies linear rise of Ω_1
- ▶ Because of the string breaking Ω_1 goes to plateau
- ► The larger the baryon density the smaller string breaking distance

Mechanism of string breaking in dense medium

In SU(2) QCD:

Analogous mechanism may be proposed in SU(3) QCD:

Charmonium dissociation in dense medium

- \triangleright String breaking at distance R_{SC}
- ▶ Charmonium dissociation takes place before the deconfinement
- ► Charmonium dissociation can be observed at modern experiments

Conclusion

- ▶ One can carry out lattice study of dense QCD-like theories
- ▶ QCD-like theories allow us to understand the properties of SU(3) QCD dense matter
- ▶ We have studied dense two-color QCD and found the following phases
 - ▶ QCD vacuum
 - BEC phase
 - Dense matter
 - BCS phase

THANK YOU FOR ATTENTION!