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Reactions in the BS approach Few-nucleon systems with relativistic separable kernel

2-body 3-body Bethe-Salpeter (BS) formalism

BS equation
BS-Fadeev
equations

Kernel of strong interactions

T matrix and D
T matrix

and T, 3He Model of EM interactions

EM probes (e, γ) Nucleon probes (p, n)

eD → eD
eD → enp
γD → np

e3He → e3He
e3He → eDp
e3He → enpp
γ3He → Dp
γ3He → npp

...

pD → pD
pD → ppn
pD → 3He

...
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BS formalism: equation Few-nucleon systems with relativistic separable kernel

Bethe-Salpeter equation for the nucleon-nucleon T matrix

T (p, p′;P ) = V (p, p′;P ) +
i

(2π)4

∫
d4k V (p, k;P )G(k;P )T (k, p′;P )

p′, p - the relative four-momenta
P - the total four-momentum

T (p, p′;P ) � two-nucleon t matrix
V (p, p′;P ) � kernel of nucleon-nucleon interaction
G(p;P ) � free scalar two-particle propagator

G−1(p;P ) =
[
(P/2 + p)2 −m2

N + iϵ
][
(P/2− p)2 −m2

N + iϵ
]
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BS formalism: equation Few-nucleon systems with relativistic separable kernel

Separable kernels of the NN interaction
The separable kernels of the nucleon-nucleon interaction are widely used in the
calculations. The separable kernel as a nonlocal covariant interaction representing
complex nature of the space-time continuum.
Separable rank-one Ansatz for the kernel

VL(p
′
0, |p′|; p0, |p|; s) = λ[L](s)g[L](p′0, |p′|)g[L](p0, |p|)

Solution for the T matrix

TL(p
′
0, |p′|; p0, |p|; s) = τ(s) g[L](p′0, |p′|) g[L](p0, |p|)

with [
τ(s)

]−1

=
[
λ[L](s)

]−1

+ h(s),

h(s) =
∑

coupledL

hL(s) = − i

4π3

∫
dk0

∫
|k|2 d|k|

∑
L

[g[L](k0, |k|)]2S(k0, |k|; s)

g[L] - the model function, λ[L′L](s) - a model parameter.
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BS formalism: equation Few-nucleon systems with relativistic separable kernel

The relativistic generalization of the NR Graz-II and Paris separable kernel:

Graz-II: 1S+
0 � rank 2, 3S+

1 −3 D1 � rank 3

Paris-1,2: 1S+
0 � rank 3, 3S+

1 −3 D1 � rank 4

Results for 1S+
0 channel

Exp. Graz-II Paris-1 Paris-2

a (fm) -23.748 -23.77 -23.72 -23.72
r0 (fm) 2.75 2.683 2.810 2.817

Results for 3S+
1 −3 D1 channels
Exp. Graz-II Graz-II Graz-II Paris-1 Paris-2

pd (%) 4 5 6 5.77 5.77
a (fm) 5.424 5.419 5.420 5.421 5.426 5.413
r0 (fm) 1.759 1.780 1.779 1.778 1.775 1.765
Ed (MeV) 2.2246 2.2254 2.2254 2.2254 2.2246 2.2250
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BS formalism: equation Few-nucleon systems with relativistic separable kernel

Phase shifts
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Relativistic Faddeev equation Few-nucleon systems with relativistic separable kernel

Experimental data for 3He
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Relativistic Faddeev equation Few-nucleon systems with relativistic separable kernel

Experimental data for 3H
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Relativistic Faddeev equation Few-nucleon systems with relativistic separable kernel

The relativistic three-particle equation for T matrix

is considered in the Fadeev form with the following assumptions:

no three-particles interaction V123 =
∑

i ̸=j Vij

two-particles interaction is separable

nucleon propagators are chosen in a scalar form

the only strong interactions are considered (not EM), so 3He ≡ T
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Relativistic Faddeev equation Few-nucleon systems with relativistic separable kernel

Bethe-Salpeter-Fadeev equation[ T (1)

T (2)

T (3)

]
=

[ T1

T2

T3

]
−

[ 0 T1G1 T1G1

T2G2 0 T2G2

T3G3 T3G3 0

][ T (1)

T (2)

T (3)

]
,

where full three-particles T matrix T =
∑

i T
(i), Gi is the free two-particles (j

and n) Green function (ijn is cyclic permutation of (1,2,3)):

Gi(kj , kn) = 1/(k2j −m2
N + iϵ)/(k2n −m2

N + iϵ),

and Ti is the two-particles T matrix which can be written as following

Ti(k1, k2, k3; k
′
1, k

′
2, k

′
3) = (2π)4δ(4)(ki − k′i)Ti(kj , kn; k

′
j , k

′
n).

with si = (kj + kn)
2 = (k′j + k′n)

2.
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Relativistic Faddeev equation Few-nucleon systems with relativistic separable kernel

Partial-wave three-nucleon functions

Ψ
(a)
λL(p0, |p|, q0, |q|; s) = g(a)(p0, |p|)τ (a)[(

2

3

√
s+ q0)

2 − q2] Φ
(a)
λL(q0, |q|; s)

System of the integral equations

Φ
(a)
λL(q0, |q|; s) =

i

4π3

∑
a′λ′

∫ ∞

−∞
dq′0

∫ ∞

0

q′2d|q′|Z(aa′)
λλ′ (q0, q; q

′
0, |q′|; s)

τ (a
′)[( 23

√
s+ q′0)

2 − q′2]

( 13
√
s− q′0)

2 − q′2 −m2 + iϵ
Φ

(a′)
λ′L(q

′
0, |q′|; s)

with e�ective kernels of equation

Z
(aa′)
λλ′ (q0, |q|; q′0, |q′|; s) = C(aa′)

∫
d cosϑqq′K

(aa′)
λλ′L (|q|, |q

′|, cosϑqq′)

g(a)(−q0/2− q′0, |q/2 + q′|)g(a′)(q0 + q′0/2, |q+ q′/2|)
( 13

√
s+ q0 + q′0)

2 − (q+ q′)2 −m2
N + iϵ
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Relativistic Faddeev equation Few-nucleon systems with relativistic separable kernel

Singularities
Poles from one-particle propagator

q0′1,2 =
1

3

√
s∓ [E|q′| − iϵ]

Poles from propagator in Z-function

q0′3,4 = −1

3

√
s− q0 ± [E|q′+q| − iϵ]

Poles from Yamaguchi-functions

q0′5,6 = −2q0 ± 2[E| 12q′+q|,β − iϵ]

and

q0′7,8 = −1

2
q0 ± 1

2
[E|q′+ 1

2q|,β
− iϵ]

Cuts from two-particle propagator τ

q0′9,10 = ±
√

q′2 + 4m2 − 2

3

√
s and ±∞

Poles from two-particle propagator τ

q0′11,12 = ±
√

q′2 + 4M2
d − 2

3

√
s

If
√
s = 3mN − Et < 3mN then q0 → iq4 (Wick-rotation procedure)MQFT-2022, S.-Petersburg, Russia, 10-15 October 2022



Relativistic Faddeev equation Few-nucleon systems with relativistic separable kernel

Im k

Re k0

0

pole

pole
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Relativistic Faddeev equation Few-nucleon systems with relativistic separable kernel

Method of solution

Wick-rotation procedure: q0 → iq4
The Gaussian quadrature with N1 ×N2[q4 × |q|] grid

q4 = (1 + x)/(1− x)

|q| = (1 + y)/(1− y)

Iteration method to obtain the triton binding energy

lim
n→∞

Φn(s)

Φn−1(s)

∣∣∣
s=M2

B

= 1

Triton binding energy (MeV)

Graz-II 4 8.628
Graz-II 5 8.223
Graz-II 6 7.832
Paris-1 7.545
Exp. 8.48
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Relativistic Faddeev equation Few-nucleon systems with relativistic separable kernel

Triton binding energy (MeV)

pD
1S0 −3 S1

3D1
3P0

1P1
3P1

4 9.221 9.294 9.314 9.287 9.271
5 8.819 8.909 8.928 8.903 8.889
6 8.442 8.545 8.562 8.540 8.527

Exp. 8.48

the main contribution is from S-states

the D-state contribution is about 0.8 � 1.2 % depending on D-wave
(pseudo)probability in deuteron

the P -state contributions are alternating and give about −0.2%
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Three-nucleon EM form factors Few-nucleon systems with relativistic separable kernel

Electromagnetic form factors of three-nucleon systems:

2FC(
3He) = (2F p

C + Fn
C)F1 −

2

3
(F p

C − Fn
C)F2,

FC(
3H) = (2Fn

C + F p
C)F1 +

2

3
(F p

C − Fn
C)F2,

µ(3He)FM(3He) = µnF
n
MF1 +

2

3
(µnF

n
M + µpF

p
M)F2 +

4

3
(F p

M − Fn
M)F3,

µ(3H)FM(3H) = µpF
p
MF1 +

2

3
(µnF

n
M + µpF

p
M)F2 +

4

3
(Fn

M − F p
M)F3,

Electric and magnetic form factors of the proton and neutron F p,n
C,M.
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Three-nucleon EM form factors Few-nucleon systems with relativistic separable kernel

Impulse approximation:

Fi(Q̂) =

∫
d4p̂

∫
d4q̂ G′

1(k̂
′
1)G1(k̂1)G2(k̂2)G3(k̂3) fi(p̂, q̂, q̂

′; P̂ , P̂ ′)

Nucleon propagators:

Gi(k̂1) =
[
k̂2i −m2

N + iϵ
]−1

,

G′
1(q

′
0, q

′) =

[
(
1

3

√
s− q′0)

2 − q′2 −m2
N + iϵ

]−1

,

Three-nucleon vertex functions:

f1 =

3∑
i=1

Ψ∗
i (p̂, q̂; P̂ )Ψi(p̂, q̂

′; P̂ ′)

f2 = −3Ψ∗
1(p̂, q̂; P̂ )Ψ2(p̂, q̂

′; P̂ ′)

f3 = Ψ∗
3(p̂, q̂; P̂ )Ψ3(p̂, q̂

′; P̂ ′)

Functions Ψi are the de�nite combinations of the partial state functions.
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Three-nucleon EM form factors Few-nucleon systems with relativistic separable kernel

The Breit reference system

Q̂ = (0,Q), P̂ = (EB ,−
Q

2
), P̂ ′ = (EB ,

Q

2
), (1)

with EB =
√

Q2/4 + s, s = M2
3N .

P̂ = LP̂c.m., p̂ = Lp̂c.m., q̂ = Lq̂c.m.

P̂ ′ = L−1P̂ ′
c.m., p̂′ = L−1p̂′c.m., q̂′ = L−1q̂′c.m.

The explicit form of the transformation L can be obtained by using (1). Let us
assume the boost of the system to be along the Z axis:

L =


√
1 + η 0 0 −√

η
0 1 0 0
0 0 1 0

−√
η 0 0

√
1 + η

 . (2)
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Three-nucleon EM form factors Few-nucleon systems with relativistic separable kernel

Relation of the arguments of initial and �nal 3N functions:

q′0 = (1 + 2η) q0 − 2
√
η
√
1 + η qz +

2

3

√
η Q, (3)

q′x = qx q′y = qy

q′z = (1 + 2η) qz − 2
√
η
√
1 + η q0 −

2

3

√
1 + η Q,

here qz = q cos θqQ is the projection of momentum q onto the Z axis
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Three-nucleon EM form factors Few-nucleon systems with relativistic separable kernel

Static approximation (SA):

q′0 = q0, q′ = q− 2

3
Q

Propagator and �nal function:

G′
1(q

′
0, q

′) →
[
(
1

3

√
s− q0)

2 − q2 − 2

3
q ·Q− 4

9
Q2 −m2

N + iϵ

]−1

Ψi(p0, p, q
′
0, q

′) → Ψi(p0, p, q0, |q− 2

3
Q|)

with q ·Q = qQ cos θqQ.
The poles of G′

1 on q0 do not cross the imaginary q0 axis and always stay in the
second and fourth quadrants. In this case, the Wick rotation procedure q0 → iq4
can be applied.

MQFT-2022, S.-Petersburg, Russia, 10-15 October 2022



Three-nucleon EM form factors Few-nucleon systems with relativistic separable kernel

Beyond the SA:

1. Exact propagator

G′
1 =

[
q20 +

2

3

√
s(1 + 6η)q0 + 4

√
1 + η

√
s
√
ηqz −

8

3
ηs+

1

9
s− q2 −m2

N + iϵ

]−1

,

Ψi(p0, p, q
′
0, q

′) → Ψi(p0, p, q0, |q− 2

3
Q|).

For any t = −Q̂2 > −Q̂2
min = 2/3

√
s(3mN −

√
s) the pole of G′

1 on q0 crosses
the imaginary q0 axis and appears in the third quadrant.
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Three-nucleon EM form factors Few-nucleon systems with relativistic separable kernel

Beyond the SA:
2. Additional term from residue inside the countour of integration
Using the Cauchy theorem, one can transform the integrals over p0, q0 as follows:∫ ∞

−∞
dp0

∫ ∞

−∞
dq0

∫ ∞

0

dq

∫ 1

−1

dy ... f(p0, q0, p, q, x, y) = (4)

−
∫ ∞

−∞
dp4

∫ ∞

−∞
dq4

∫ ∞

0

dq

∫ 1

−1

dy ... f(ip4, iq4, p, q, x, y)

+2π Res
q0=q

(2)
0

∫ ∞

−∞
dp4

∫ qmax

qmin

dq

∫ 1

ymin

dy ... f(ip4, q
(2)
0 , p, q, x, y),

where (...) means the two-fold integral
∫∞
0

dp
∫ 1

−1
dx and

q
(1,2)
0 =

√
s

3
(1 + 6η)±

√
4η(1 + η)s− 4

√
s
√
η
√
1 + ηqy + q2 +m2

N (5)

are the simple poles of the propagator G′
1.
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Three-nucleon EM form factors Few-nucleon systems with relativistic separable kernel

Im k

Re k0

0

k0

1

2 3

4 5

6

k0

k0k0 k0

k0

c1

+

_

c

c
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Three-nucleon EM form factors Few-nucleon systems with relativistic separable kernel

Beyond the SA:
3. Final function arguments transformation
Remembering that the BSF solutions are known for real values of q4 only, the
following assumption was made:

Ψ(p0, p, q
′
0, q

′) → g(p0, p) τ [(
2

3

√
s+ q

(2)
0 )2 − q̄′2] Φ(0, q̄′),

where value q̄′ is obtained using (3) with q0 = q
(2)
0 .

The expansion of the function Φ(q′4, q
′) up to the �rst order of the parameter η:

Φ(iq′4, q
′) = Φ(iq4, |q− 2

3
Q|) +

[
Cq4

∂

∂q4
Φj(iq4, q)

]
q=|q− 2

3Q|

+
[
Cq

∂

∂q
Φj(iq4, q)

]
q=|q− 2

3Q|
,

where

Cq4 = −i

(
2iηq4 − 2

√
η
√
1 + ηq cos θqQ +

2

3

√
ηQ

)
,

Cq =

(
2ηq cos θqQ − 2i

√
η
√
1 + ηq4 −

2

3
(
√
1 + η − 1)Q

)
cos θqQ.

To exclude double counting, one needs to take into account only the second and
third terms of the right-hand expression of expression since the �rst term coincides
with BC.
In this case, the function Φ′ is determined by the integral Φ′ =

∫
K ′Φ where K ′

is a derivative of the kernel of the integral equation.
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Three-nucleon EM form factors Few-nucleon systems with relativistic separable kernel

Graz-II relativistic kernel
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Three-nucleon EM form factors Few-nucleon systems with relativistic separable kernel

Paris relativistic kernel
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Conclusion Few-nucleon systems with relativistic separable kernel

Summary

the relativistic three-nucleon vertex functions were founs solving the BSF
systen of equations

the charge and magnetic EM form factors of the 3N systems were calculated

the static approximation and relativistic corrections were investigated

the relativistic corrections were found to be signi�cant in describing the
experimental data
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Backup Few-nucleon systems with relativistic separable kernel

BACKUP SLIDES
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Outline Few-nucleon systems with relativistic separable kernel

The Bethe-Salpeter approach is a powerful tool to investigate few-body
compounds such as the deuteron, unbound neutron-proton (np) system,
three-nucleon systems, elastic and nonelastic scattering. We have a great
experience in working within such approach.
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Outline Few-nucleon systems with relativistic separable kernel

Bethe-Salpeter equation and its solution for the separable kernel of interaction

Yamaguchi-type of kernel functions and Graz-II relativistic kernel

elastic eD-scattering

modi�ed Yamaguchi functions and �tting of parameters

wide dibaryon resonances

conclusion and summary
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Outline Few-nucleon systems with relativistic separable kernel

Reactions

Solution of the BS
(BSF) equations:

BS amplitude, T matrix

- Models of the EW/hadronic
current: 1-body (impulse
approximation), 2(3)-body;
- o�-mass shell e�ects;

- form factors;
- so on
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Outline Few-nucleon systems with relativistic separable kernel

Why a relativistic approach?

Elastic electron-deuteron scattering experiments
�Large Momentum Transfer Measurements of the Deuteron Elastic Structure
Function A(Q2) at Je�erson Laboratory�
JLab Hall A Collaboration, Phys.Rev.Lett.82:1374-1378,1999
Q2=0.7-6.0 (GeV/c)2

Lorentz transformation factor: ηLOR = −Q2/4M2
d ∼ 0.43,√

1 + ηLOR ∼ 1.19,
√
ηLOR ∼ 0.65

Exclusive disintegration of the deuteron experiments
JLab Hall C Deuteron Electro-Disintegration at Very High Missing Momenta
(E12-10-003) proposal
https://www.jlab.org/exp_prog/proposals/10/PR12-10-003.pdf:
�We propose to measure the D(e,e'p)n cross section at Q2 = 4.25 (GeV/c)2

and xbj = 1.35 for missing momenta ranging from pm = 0.5 GeV/c to
pm = 1.0 GeV/c expanding the range of missing momenta explored in the
Hall A experiment (E01-020)�

Lorentz transformation factor: ηLOR = −Q2/4snp ∼ 0.30,√
1 + ηLOR ∼ 1.14,

√
ηLOR ∼ 0.55
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Outline Few-nucleon systems with relativistic separable kernel

What is a separable kernel?
The integral equations in the nuclear physics (Lippmann-Schwinger,
Bethe-Salpeter) can be reduced to the Fredholm (�rst or second) type of
equations. The separable kernel of the integral equation is the degenerated kernel.
Fredholm integral equation of the second type:

ϕ(x) = f(x) + λ

∫
dy K(x, y)ϕ(y)

Degenerated kernel of the equation:

K(x, y) =
∑
i

ai(x)bi(y)

Solution of the equation:

ϕ(x) = f(x) + λ
∑
i

ciai(x)

Constants ci can be found by solving the system of linear equations

ci − λ
∑
j

kijcj = fi

Matrix kij and fi are:

kij =

∫
dy bi(y)aj(y), fi =

∫
dy f(y)bi(y)

MQFT-2022, S.-Petersburg, Russia, 10-15 October 2022



Historical background Few-nucleon systems with relativistic separable kernel

Separable kernel for Schrodinger equation with separable potential

Yoshio Yamaguchi �Two-Nucleon Problem When the Potential Is Nonlocal but
Separable. I� Phys.Rev.95, 1628 (1954)
Yoshio Yamaguchi, Yoriko Yamaguchi �Two-Nucleon Problem When the Potential
Is Nonlocal but Separable. II� Phys.Rev.95, 1635 (1954)

Nonlocal: ⟨r|V |r′⟩ ≠ δ(3)(r− r′)
in con�guration space

⟨r|V |r′⟩ = −(λ/mN )v∗(r)v∗(r′)

in momentum space
⟨p|V |p′⟩ = (λ/mN )g∗(p)g∗(p′)

for S-state: g(p) = 1/(p2 + β2)
for D-state: g(p) = p2/(p2 + β2)2

for the deuteron and scattering problem.
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Historical background Few-nucleon systems with relativistic separable kernel

Separable nucleon-nucleon potential was widely uses for the two- and
three-nucleon calculations in nonrelativistic nuclear physics

Willibald Plessas et al. Graz, Graz-II potentials, separable representation of the
popular Bonn and Paris potentials

K. Schwarz, Willibald Plessas, L. Mathelitsch �Deuteron Form-factors And E D
Polarization Observables For The Paris And Graz-II Potentials� Nuovo Cim. A76
(1983) 322-329.
J. Haidenbauer, Willibald Plessas �Separable Representation Of The Paris Nucleon
Nucleon Potential� Phys.Rev. C30 (1984) 1822-1839.
Johann Haidenbauer, Y. Koike, Willibald Plessas �Separable representation of the
Bonn nucleon-nucleon potential� Phys.Rev. C33 (1986) 439-446.

g(p) =
∑
n

p2m/(p2 + β2
n)

n,

m corresponds to angular momentum
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Historical background Few-nucleon systems with relativistic separable kernel

Lippmann-Schwinger equation → Bethe-Salpeter equation

G. Rupp and J. A. Tjon �Relativistic contributions to the deuteron
electromagnetic form factors� Phys. Rev. C41. 472 (1990)

p2 → −p2 = −p20 + p2

gp(p, P ) =
1

−p2 + β2

c.m.−→ 1

−p20 + p2 + β2 + iϵ

singularities: p0 = ±
√
p2 + β2 ∓ iϵ

This procedure works well for reactions with 2-body bound state but failed for
unbound np-state

MQFT-2022, S.-Petersburg, Russia, 10-15 October 2022



Solution of the BS equation Few-nucleon systems with relativistic separable kernel

Kernel of interaction V (p′, p)

BS equation Separable Ansatz [λ, g]

Solution for T (p′, p) matrix

On-mass-shell T̄ = T (p̄, p̄) matrix

S matrix Arndt-Roper parametrization

Phase shift δ, inelasticity ρ

Minimize χ2[λ, g]

Experimental data
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Solution of the BS equation Few-nucleon systems with relativistic separable kernel

S matrix (Arndt-Roper parametrization)

S =
1−Ki + iKr

1 +Ki − iKr
= η exp(2iδ)

K = Kr + iKi

Kr = tan δ, Ki = tan2 ρ

δ - the phase shift, ρ - the inelasticity parameter.

η2 =
1 +K2 − 2Ki

1 +K2 + 2Ki
= |S|2 ∼ σnp

K2 = K2
r +K2

i

δ =
1

2
{tan−1[Kr/(1−Ki)] + tan−1[Kr/(1 +Ki)]}

If there are no inelastic channels: (ρ = 0), δ = δe, η = 1 and S = Se = exp(2iδe).
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Solution of the BS equation Few-nucleon systems with relativistic separable kernel

Procedure (J = 0− 1)

calculate the kernel parameters � λ(s)-matrix and parameter of the g-functions �
to minimize the function χ2:
χ2 =

n∑
i=1

(δexp(si)− δ(si))
2/(∆δexp(si))

2 � for all partial-wave states

n∑
i=1

(ρexp(si)− ρ(si))
2/(∆ρexp(si))

2 � for all partial-wave states

+(aexp0 − a0)
2/(∆aexp0 )2 � for the 1S+

0 and 3S+
1 partial-wave states

+(Eexp
d − Ed)

2/(∆Eexp
d )2 � for the 3S+

1 -
3D+

1 partial-wave states
{+...}

δ - the phase shifts, a0, r0 - the low-energy parameters (the scattering length, the
e�ective range), Ed - the deuteron binding energy
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Solution of the BS equation Few-nucleon systems with relativistic separable kernel

Covariant generalization of the Yamaguchi-functions

functions for g[L](p0, p):

g[S](p0, |p|) =
1

p20 − p2 − β2
0 + i0

g[P ](p0, |p|) =
√
| − p20 + p2|

(p20 − p2 − β2
1 + i0)2

g[D](p0, |p|) =
C(p20 − p2)

(p20 − p2 − β2
2 + i0)2
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Solution of the BS equation Few-nucleon systems with relativistic separable kernel

Results for 3P0,
1P1 and 3P1 channels

Table: Parameters

3P0
3P1

1P1

λ (GeV6) 0.0428572 -5.83051 -3.68029
β1 (GeV) 0.19904 0.48273 0.44127
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Solution of the BS equation Few-nucleon systems with relativistic separable kernel

Results for 3P0,
1P1 and 3P1 channels
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Solution of the BS equation Few-nucleon systems with relativistic separable kernel

Results for 3S+
1 −3 D+

1 channels
Table: Parameters

Exp. 3S1 −3 D1
3S1 −3 D1

3S1 −3 D1

(pd = 4%) (pd = 5%) (pd = 6%)
λ (GeV4) -1.83756 -1.57495 -1.34207
β0 (GeV) 0.251248 0.246713 0.242291
C2 1.71475 2.52745 3.46353
β2 (GeV) 0.294096 0.324494 0.350217
aL (fm) 5.424 5.454 5.454 5.453
rL (fm) 1.756 1.81 1.81 1.80
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Solution of the BS equation Few-nucleon systems with relativistic separable kernel

Bethe-Salpeter-Fadeev equation
Introducing the equal-mass Jacobi momenta

pi =
1

2
(kj − kn), qi =

1

3
K − ki, K = k1 + k2 + k3.

one can separate the conserved total momentum

T (i)(k1, k2, k3; k
′
1, k

′
2, k

′
3) = (2π)4δ(4)(K −K ′)T (i)(pi, qi; p

′
i, q

′
i; s),

with s = K2

Amplitude of three-particle state as a projection of T matrix to the bound state:

Ψ(i)(pi, qi; s) = ⟨pi, qi|T (i)|MB⟩,

with
√
s = MB = 3mN − Et.

MQFT-2022, S.-Petersburg, Russia, 10-15 October 2022



Solution of the BS equation Few-nucleon systems with relativistic separable kernel

Bethe-Salpeter-Fadeev equation

Orbital momentum of triton
L = l + λ

l � orbital momentum of NN -pair
λ � orbital momentum of 3d particle
Using separable Ansatz for two-particles T matrix one-rank

ΨLM (p, q; s) =
∑
aλ

Ψ
(a)
λL(p0, |p|, q0, |q|; s)Y

(a)
λLM (p̂, q̂)

Y(a)
λLM (p̂, q̂) =

∑
mµ

CLM
lmλµYlm(p̂)Yλµ(q̂),

where a ≡ 2s+1lj is two-nucleon states of the NN -pair

MQFT-2022, S.-Petersburg, Russia, 10-15 October 2022



Solution of the BS equation Few-nucleon systems with relativistic separable kernel

Angular functions in general case

K
(aa′)
λλ′L (|q|, |q

′|, cosϑqq′) = (4π)3/2
√
2λ+ 1

2L+ 1
(−1)l

′

∑
mm′

CLm
lmλ0C

Lm
l′m′λ′m−m′Y ∗

lm(ϑ, 0)Yl′m′(ϑ′, 0)Yλ′m−m′(ϑqq′ , 0)

where

cosϑ = (
|q|
2

+ |q′| cosϑqq′)/|q
2
+ q′|

cosϑ′ = (|q|+ |q′|
2

cosϑqq′)/|q+
q′

2
|
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Solution of the BS equation Few-nucleon systems with relativistic separable kernel

Consider the ground state of triton: L = 0 → λ = l

Angular functions

K
(aa′)
ll′0 = (4π)3/2(−1)l+l′Y ∗

l0(ϑ, 0)Al′(ϑ
′, ϑqq′)

Al′(ϑ
′, ϑqq′) =

∑
m′

C00
l′m′l′−m′Yl′m′(ϑ′, 0)Yl′−m′(ϑqq′ , 0)

Spin-isospin dependence
[(a) =1 S0,

3 S1,
3 D1,

3 P0,
1 P1,

3 P1]

C(aa′) =
1

4
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Solution of the BS equation Few-nucleon systems with relativistic separable kernel

One-rank relativistic kernel, static approximation, 3He
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Solution of the BS equation Few-nucleon systems with relativistic separable kernel

Beyond the SA:
The �rst integral on the right-hand side of (4) is a six-fold integral. The second
one is a �ve-fold integral with the limits of integration on q and y

qmin,max = 2
√
s
√
η
√
1 + η ∓ 1

3

√
s+ 12ηs+ 36η2s− 9m2

N , (6)

ymin =
1

36

24ηs+ 9m2
N + 9q2 − s

q
√
s
√
η
√
1 + η

, ymax = 1,

and the residue at the point q0 = q
(2)
0 is calculated.

MQFT-2022, S.-Petersburg, Russia, 10-15 October 2022



Solution of the BS equation Few-nucleon systems with relativistic separable kernel

Nucleon form factor models
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the dashed line - DIPOLE, the dotted line - RHOM, the dashed-dotted line -
VMDM.
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