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3The problem of the sign of the energy in relativistic case has principal meaning and can lead

to different physical phenomena for example to the Penrose effect in rotating black holes. In

nonrelativistic case the potential energy of the particle is defined up to the additive constant and

depending on its definition one can have different classification of motion of particles with negative

energies. For example if the energy of the particle at rest on space infinity in nonrelativistic case is

taken to be zero then the sign of the sum of the potential and kinetic energies in case of the Kepler

problem defines the bounded and unbounded orbits. However taking it as in relativistic case to

be mc2 for particle with mass m (c is the velocity of light) one obtains for the full negative energy

of the nonrelativistic particle moving with the velocity v on the distance r from the attracting

massive body with the mass M

mc2 +
mv2

2
− G

mM

r
< 0 ⇒ r <

GM

c2
=

rg

2
, (1)

where G is the Newton gravitational constant, rg is the gravitational radius. So negative energy

in this case can be only on distances smaller than the gravitational radius.

However it can show that negative (and zero) particle energies are possible not only in strong

gravitational fields but in the case of absence of the gravitational field in different reference frame,

for example in rotating coordinates (A.A.Grib, Yu.V.Pavlov, Gen. Relativ. Gravit. (2017) 49

78).

Here we consider the cases Schwarzschild black hole, flat space-time in Milne’s

coordinates, and Gödel cosmological model.



4Negative energy in nonrotatitng black hole

Nonrotating black hole of mass M in Schwarzschild coordinates is described by metric

ds2 =
⎛
⎝1−rg

r

⎞
⎠ c2dt2 − dr2

1− rg

r

− r2
(
dθ2+ sin2θ dϕ2

)
, (2)

where rg = 2GM/c2 is the gravitational radius of the black hole, G is gravitational constant, c is

the light velocity. Geodesic complete space-time of the nonrotating black hole one can be described

in Kruskal–Szekeres coordinates, {u, v} ∈ (−∞, +∞), which in region u > |v| ≥ 0 are

connected with Schwarzschild coordinate in r > rg in the following way

u =

√√√√√ r

rg
− 1 exp

⎛
⎜⎝ r

2rg

⎞
⎟⎠ cosh

ct

2rg
,

v =

√√√√√ r

rg
− 1 exp

⎛
⎜⎝ r

2rg

⎞
⎟⎠ sinh

ct

2rg
. (3)

For r < rg and v > |u| ≥ 0 the transformation from Schwarzschild coordinate in the Kruskal–

Szekeres coordinates has the form

u =

√√√√√1 − r

rg
exp

⎛
⎜⎝ r

2rg

⎞
⎟⎠ sinh

ct

2rg
,

v =

√√√√√1 − r

rg
exp

⎛
⎜⎝ r

2rg

⎞
⎟⎠ cosh

ct

2rg
. (4)



5Geodesic equations in Schwarzschild coordinates in the plane θ = 0 are

dt

dλ
=

r

r − rg
· E

c2
, (5)

⎛
⎜⎝dr

dλ

⎞
⎟⎠
2

=
E2

c2
+

rg − r

r3
J2 +

rg − r

r
m2c2,

dϕ

dλ
=

J

r2
,

where E is the energy of the moving particle, J is the conserved projection of the particle

angular momentum on the axis orthogonal to the plane of motion, m is the particle mass, λ is

affine parameter on geodesic. For massive particle λ = τ/m, where τ is the proper time.

In external region of the black hole (r > rg) for any physical object the time coordinate t is always increasing and so the

energy E of the particle is positive (see (5)). Inside the horizon of the black (r < rg), where t is space like (gtt < 0) one has

movement as in increasing as in decreasing t. As it is seen from the first formula in (5) for a particle moving inside the horizon

in the direction of decreasing of the coordinate t the energy E of the particle will be positive while for increasing coordinate t the

energy E is negative. For constant t inside the black hole E = 0 due to formula (5).

For the observer outside of the black hole the conserved E along all trajectories of the free fall

is equal to

E = mc2

√√√√√√
(
1 − rg

r

)/⎛
⎜⎝1 − v2

c2

⎞
⎟⎠, (6)

where v is the velocity measured by the observer at rest in the Schwarzschild coordinates. So we
can call E inside the black hole as “energy at infinity”.



6
On Fig. 1 the trajectories for radial movement with positive, zero and negative energies in

Kruskal–Szekeres coordinates are represented by red, green and blue lines.

Figure 1: Trajectories of particles with positive (B+H+F+), zero (M±ON±) and negative (B−H−F−) energy,
t±1 = ∓0.5rg/c: On the left one can see falling from the rest at |E| = 0.5mc2, on the right with |E| = mc2 with

the corresponding initial velocity from the point r = 1.15rg. On lines (M±ON±) the coordinate t = ±rg/c.

As one can see from (3), (4) the coordinate lines of constant t in Kruskal–Szekeres coordinates are straight

lines through the origin of coordinates. In region II coordinates t decreases for moving from H+ to F+ (positive

E) and increases for moving from H− to F− (negative value of E). Direct lines (M±ON±) correspond to

constant t = ±rg/c and therefore E = 0.
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Let us consider the problem of back influence of falling particles on metric of the black hole

space-time. For macroscopic bodies with 4-velocity (ui), with the energy density ε and pressure p

in space-time with metric gik the energy-momentum density tensor is

Tik = (ε + p)uiuk − pgik, (7)

i, k = 0, 1, 2, 3.

The trace of the energy-momentum tensor

T i
i = ε − 3p (8)

is invariant and it will be negative for ε − 3p < 0, in particular, for dust like matter (p = 0)

with negative energy ε < 0. The back influence of falling particles with negative energy will be

determined by the such energy-momentum tensor in the right hand side of Einstein equations.

Notion of the existence of particles with negative energies as it is known was used by S. Hawking

to predict Hawking effect for black holes.
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Negative and zero energies in flat space-time

The geodesic lines equations can be obtained for space-time with metric gik from the Lagrangian

L =
gik

2

dxi

dλ

dxk

dλ
, (9)

where λ is the affine parameter on the geodesic. The energy of the particle E is equal to the zero

covariant component of the momentum (pi) multiplied on the light velocity

pi =
∂L

∂
(

dxi

dλ

) = gik
dxk

dλ
, (10)

E = cp0 = cg0k
dxk

dλ
. (11)

Defining the affine parameter for the massive particle as λ = τ/|m|, where τ is the proper time

of the moving particle one obtains

pip
i = m2c2 (12)

and the energy of the particle is

E = |m|cg0k
dxk

dτ
. (13)

Here we suppose generally that the mass can be negative.
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Using notation (ζi) = (1, 0, 0, 0) for the translation in time coordinate generator one can

write (11) for the energy of the particle as

E = c(p, ζ). (14)

If the metric components don’t depend on the time coordinate x0, then ζ is the time like Killing

vector and the energy E is conserved on the geodesic.

For time like vector ζ and massive particle one has
√
(ζ, ζ) ≤ E

|m|c2
< +∞ (15)

and the energy (14) is positive.

For space like vector ζ, as it take place in the ergosphere of rotating black hole, the

arbitrary positive and negative values are possible.

Note that in spite of the invariance of the scalar product (14) the value (13) of the energy

depends on the choice of the reference frame. This occurs due to the fact that by changing the

reference frame in which the physical measurements are made the observer is changing vector ζ.

The analysis of the situation in rotating coordinate system in flat space-time is made in

A.A.Grib, Yu.V.Pavlov. Comparison of particle properties in Kerr metric and in rotating

coordinates. Gen. Relativ. Gravit. (2017) 49 78

A.A.Grib, Yu.V.Pavlov. Static limit and Penrose effect in rotating reference frames.

Theor. Math. Phys. 2019. Vol. 200 1117–1125.
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In Minkowski space-time in Galilean coordinate system or any other coordinate

system with g0α = 0, (α = 1, 2, 3) the energy (11) is

E = c2 dt

dλ
(16)

and it is always positive in movement “forward” in time because in the future light cone one has

dt/dλ > 0. For massive particle as with positive as negative mass m the energy is

E = |m|c2 dt

dτ
> 0. (17)

Now let us give an example showing that in flat space-time the energy of the relativistic particle

can be negative and zero in case of the special choice of the coordinate frame.



11Negative Energies in Milne’s Universe

Consider the coordinate system in which metric of flat space-time has the form of the metric

of the expanding homogeneous isotropic Universe — Milne universe

E.A. Milne, Relativity, Gravitation and World-Structure (Clarendon Press,

Oxford, 1935)

ds2 = c2dt2 − c2t2
(
dχ2 + sinh2 χdΩ2

)
, (18)

where dΩ2 = dθ2 + sin2 θ dϕ2, coordinate χ is changing from 0 to +∞.

In new coordinates

T = t cosh χ, r = ct sinh χ, cT > r > 0 (19)

the interval (18) coincides with Minkowski interval

ds2 = c2dT 2 − dr2 − r2 dΩ2. (20)

This space-time with coordinate t ≥ 0, χ ≥ 0 is corresponds to the future cone in coordinates

cT, r.

The radial distance from points χ = 0 and χ in metric (18) is D = ctχ. Taking D as the

radial coordinate one obtains the interval as

ds2 =

⎛
⎜⎝1 − D2

c2t2

⎞
⎟⎠ c2dt2 + 2

D

t
dtdD − dD2 − c2t2 sinh2

⎛
⎝D

ct

⎞
⎠ dΩ2. (21)
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From the condition ds2 ≥ 0 one obtains that if D is larger than Ds = ct, then no physical object

can be at rest in coordinates t, D, θ, φ. The value Ds corresponds to χ = 1 and it plays the

role of the static limit for the rotating black hole in Boyer-Lindquist coordinates.

The energy of the particle with mass m in coordinates t, D, θ, φ is

E = cg0k
dxk

dλ
= mc2 dt

dτ

⎛
⎜⎝1 − D2

c2t2
+

D

c2t

dD

dt

⎞
⎟⎠ = mc2 dt

dτ

⎛
⎝1 + χt

dχ

dt

⎞
⎠ . (22)

From (18) one obtains for any physical object the inequality

t

∣∣∣∣∣∣
dχ

dt

∣∣∣∣∣∣ ≤ 1. (23)

So particle can have negative energy only for χ > 1, i.e. out of the static limit, if

dχ

dt
< − 1

χt
. (24)

Note that the components of metric (21) depend on time and the energy (22) in general is not

conserved on the geodesics. If the energy is zero then particle is moving noninertial according to

the law

E = 0 ⇔ dχ

dt
= − 1

χt
⇔ χ =

√
χ2

0 − 2 log(t/t0), t ∈
[
t0, t0 exp((χ2

0 − 1)/2)
]
. (25)
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The trajectory of such movement for case χ0 = 2, t0 = 0.11 is represented by the curve on Fig. 2

in coordinates T , r (see (19)). In case of the inertial movement trajectory in these coordinates

Figure 2: Possible region of movement of particle with negative and zero energies in the reference frame t, D in flat coordinate T, r.

is the direct line. Possible region of movement of particles with negative and zero energies in the

reference frame t, D is defined in the coordinate T, r by conditions 1 ≤ cT/r ≤ coth 1 ≈ 1.313.
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Velocities of movement in coordinates T, r and t, χ satisfy condition

t
dχ

dt
=

dr

dT
− c tanh χ

c − dr

dT
tanh χ

. (26)

So for

χ tanh χ ≥ 1 (27)

particles at rest in inertial frame T, r will have negative energies in the frame

t, D. This region can be seen on Fig. 2 as the region above the blue line in red district. Zero

energy of the particle at rest in T, r coordinates is possible only the blue line defined by the root

of equation χ tanh χ = 1, i.e. χ ≈ 1.1997.

So one can see that for specific choice of coordinates one can obtain negative and zero energies

for particles at rest in inertial frame.

Note that for small distances (D/(ct) = χ 
 1) the metric (21) becomes the metric of comoving

spherical coordinate system of Minkowski space-time

ds2 = c2dt2 − dD2 − D2dΩ2, (28)

and the energy (22) will be equal to usual energy in inertial system of flat space-time

Eu = mc2 dt

dτ
≈ mc2dT

dτ
, (29)

because for χ 
 1 one has t ≈ T .
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The decay of the body on two bodies, one with negative energy and the other with the positive

energy being larger than the energy of the initial decaying one corresponds to the Penrose process.

This process occurs out of the static limit on distance D > ct. However later these two products

of the decay move inside the static limit and during flight in the direction of the origin where the

metric is that of Minkowski space change their energies in such manner that the result will be the

same as in inertial frame. Really due to (22),

E = Eu + mc2χt
dχ

dτ
. (30)

Here Eu is the energy in the reference frame t, χ, such that g0i = 0, i �= 0, and g00 does not

depend on time. So Eu is conserved. At the point of decay both energies E and Eu are conserved.

When the body 2 with the positive energy arrives to the coordinate origin χ = 0 its energy E

(30) will be equal to Eu and no growth of the energy will be observed.

Body 1 with the negative energy E due to (22) after decay will have the negative value of

velocity dχ/dt larger (in absolute value) than that of the body 2. This means that it will arrive

to the origin before the arrival of body 2. It’s energy in the origin of the coordinate frame will

be also positive and the full energy of 1 and 2 will be equal to that of decaying body. So at the

origin one will not observe any effect which makes this situation similar to the situation for Kerr’s

black hole.



16Negative energy in Gödel universe
Metric of the Gödel cosmological model of the rotating Universe proposed in 1949 can be written

as

ds2 = c2dt2 − dx2
1 +

exp
(
2
√

2ωx1/c
)

2
dx2

2 + 2 exp
(√

2ωx1/c
)
cdtdx2 − dx2

3, (31)

where ω is constant. Such metric is the exact solution of Einstein’s equation with background

matter as ideal liquid without pressure and negative cosmological constant Λ

Rik − 1

2
Rgik + Λgik = −8π

G

c4
Tik, (32)

were

−Λ =
(ω
c

)2
= 4π

G

c2
ρ, Tik = ρc2uiuk, (33)

ui = δi
0. Here ω has the sense of the angular velocity of rotation of the vector of fluid of the

background matter ui. Taking instead of t, x1, x2 new coordinates t′, r, φ:

exp
(√

2ωx1/c
)

= cosh 2r + cos φ sinh 2r, ωx2 exp
(√

2ωx1/c
)

= sin φ sinh 2r, (34)

tan
1

2

(
φ + ωt −√

2t′
)

= exp(−2r) tan
φ

2
, (35)

one writes the interval (31) in the form:

ds2 = 2
( c

ω

)2
(dt′2 − dr2 + (sinh4 r − sinh2 r)dφ2 + 2

√
2 sinh2 rdφdt′) − dx2

3, (36)

where −∞ < t′ < ∞, 0 ≤ r < ∞, 0 ≤ φ < 2π with identifying φ = 0 and φ = 2π.
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Now consider the general case of space-time t′, r, φ, z with the interval

ds2 = a2
[
(dt′ + Φ(r)dφ)

2− dr2− dz2− R2(r)dφ2
]
, (37)

where a is constant, −∞ < t < ∞, 0 ≤ r < ∞, −∞ < z < ∞, 0 ≤ φ ≤ 2π with identifying

φ = 0 and φ = 2π. Let’s Φ(r) > 0 and R(r) > 0 for r > 0.

For Gödel universe a =
√

2c/ω, z = x3/a and

Φ(r) =
√

2 sinh2 r, R(r) = sinh r cosh r. (38)

The metrical tensor is

(gik) = a2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 Φ 0 0

Φ Φ2 − R2 0 0

0 0 −1 0

0 0 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (gik) =
1

a2R2(r)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

R2 − Φ2 Φ 0 0

Φ −1 0 0

0 0 −R2 0

0 0 0 −R2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (39)

where indexes i, k = 0, 1, 2, 3 correspond to t′, φ, r, z. Note that for any r > 0 the metrical tensor

is not degenerate det (gik) = −a8R2(r) < 0. The degeneration for r = 0 in Gödel universe is

coordinate degeneracy. The eigenvalues of gik tensor are

λ1,2 =
a2

2

(
Φ2 − R2 + 1 ±

√
(Φ2 − R2 + 1)2 + 4R2

)
, λ3,4 = −a2. (40)

For r > 0 one has

λ1 ≥ a2, 0 > λ2 ≥ −a2R2. (41)
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Note that inspite gφφ is positive for Φ(r) > R(r) the signature of gik for all r > 0 is the standard

(+,−,−,−).

Possible movement of particles is defined by ds2 ≥ 0 so for the interval (37)

one has

dt′2 +
(
Φ2(r) − R2(r)

)
dφ2 + 2Φ(r)dφdt′ − dr2 − dz2 ≥ 0. (42)

It is important that for any coordinate system with interval (37) the physical body for any values

of r, φ, z can be at rest, i.e. there is no static limit! However in (37) there is nondiagonal term

dt′dφ like in Kerr’s metric. But differently from the case of rotating coordinate system there is

the possibility of the change of the sign before dφ2.

From (42) one obtains
⎛
⎜⎜⎝
dt′

dφ

⎞
⎟⎟⎠
2

+ 2Φ(r)
dt′

dφ
+ Φ2(r) − R2(r) ≥ 0. (43)

The solution of this inequality is the union of two intervals

dt′

dφ
∈ (−∞,−(Φ(r) + R(r))] ∪ [R(r) − Φ(r), +∞) . (44)

Considering cases of different signs of dφ, one obtains the following sets of solutions of (43):

dφ ≥ 0 ⇒ dt′ ≥ (R − Φ)dφ ∨ dt′ ≤ −(R + Φ)dφ, (45)
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dφ ≤ 0 ⇒ dt′ ≥ −(R + Φ)dφ ∨ dt′ ≤ (R − Φ)dφ. (46)

These sets define light “cones” of future and past for the metric (37).

The form of these cones in cases Φ 
 R, Φ = R and Φ > R is shown in Fig. 3 for the Gödel

universe with

Φ(r) > R(r) ⇔ r > r0 = log(1 +
√

2). (47)

Figure 3: Light “cones” of future (blue color) and past (yellow color) for Gödel universe in coordinates

t′, φ for cases r = 10−3 (left), r = r0 (center) and r = 2r0 (right).

Let us find limitations on possible values of the energy of particles moving in such universe.
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The coordinate t′ is dimensionless, so the “physical energy” of the particle is expressed through

the time component of the momentum as

E = p0
c

a
= g0k

c

a

dxk

dλ
. (48)

For the frame with coordinates (37) the covariant t′, φ, z components are conserved, because

the component of metric depend only on r. So the conserved energy on the geodesic for the

interval (37) is

E = ca

⎛
⎜⎜⎝
dt′

dλ
+ Φ(r)

dφ

dλ

⎞
⎟⎟⎠ . (49)

From (45), (46) for the case of movement “forward” in time, i.e. in the future light cone one

obtains

dt′ + Φdφ ≥ R|dφ|, (50)

so

E ≥ caR
|dφ|
dλ

. (51)

It means that for particle moving in the future cone in Gödel universe the energy is not negative.
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For movement “back in time” the energy is limited from above by

E ≤ −caR
|dφ|
dλ

(52)

and so it can be less or equal zero. However such movement physically is inconsistent.

The “time machine” effect in Gödel universe corresponds to continuous move-

ment in the future cone. So for r > r0, where Φ(r) > R(r) closed loops (they are not geodesic

lines) r = const, z = const, called Gödel cycles, from φ = 0 to φ = 2π are closed time-like curves.

Particle moving along such cycle is moving “forward” in time but due to identification of values

φ different on 2π it occurs in the past after the whole cycle. It’s energy is positive due to (51).

Such “time machine” is different from that moving in the past by the sign of particle energy.
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Conclusion

Three different cases are investigated concerning the possibility
of existence of particles with negative and zero energies.

1. Schwarzschild black hole. Trajectories of particles with neg-
ative and zero energies exist inside of the horizon of black hole
which can be shown in Kruskal–Szekeres coordinates.

2. Flat space-time in Milne’s coordinates. Here one also has the
possibility of existence of particles with negative and zero energies
if nonsynchronous system of coordinates is used.

3. Gödel cosmological model with rotation. Here we proved that
in this model in Gödel’s coordinates particles with negative and
zero energies don’t exist.



Thank You for attention !


