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Schwinger-Dyson equation
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where D is a full propagator, A is a bar
propagator, 2 is a self-energy operator.
In the minimal subtraction (MS) scheme it holds:
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where p is a momentum.



Fhe inverse full propagator has the following
characteristic:
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In the main approximation it holds

D =
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where A is an amplitude, m is a mass.

We consider scalar theories ¢3, d* $°in
logarithmic dimensions in Euclidian space.




Theory @°.
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In one-loop approximation we have:
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where line is the full propagator (skeleton equation).
Substituting the ansatz D(p)=A/(p?+m?) we obtain
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we obtain
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Applying the R-operation we obtain
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where g = @ yg is the Euler’s constant.
The Schwinger-Dyson equation takes the form:
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To calculate mass we put p?=—m?. We also differentiate the equation in
p? and put p? = —m?, and we obtain the system of 2 equations:
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Solving it in frames of perturbation theory we obtain:
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So it holds
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Theory @*.
"L =%(6¢)2 +%(¢2)Z, 1>0,d=4-—2¢

¢ is an n-component scalar field
In one-loop approximation we have:
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Substituting the ansatz D(p)=A/(p?+m?) we obtain
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After the R-operation the Schwinger-Dyson equation takes the
form:
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where g = amz VE 1S the Euler’s constant.

Substituting p? = — m? and differentiating D! with p? we receive:
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Theory ¢°.

1 2
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In the main approximation in coupling constant we have:
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Substituting the ansatz D(p)=A/(p?+m?) we obtain
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where g =



Bhe Schwinger-Dyson equation takes the form:
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Substituting p? = — m? and differentiating D! with p? we receive:
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The solutionis: m=0, A = 1.
That is, the mass does not appear.



Now, we apply the Pauli-Villars regularization:

D() A A
— — 00
P p? + m? p2+am2'a

in the dimension d = 3.
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After the R-operation we obtain the same result
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Conclusion.

We have investigated the scalar models ¢3, ¢*
and @° in the logarithmic dimension of space.
For the theories ¢ and ¢* the mass appears in

the first oro
for the @°-t
the first oro

er of perturbation theory whereas
neory the mass does not appear in

er. The result does not depend on

the way of regularization.



Thank you for your attention!!!



