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Abstract

The Landau-Khalatnikov-Fradkin (LKF) transformation is a pow-

erful and elegant transformation allowing to study the gauge de-

pendence of the propagator of charged particles interacting with

gauge fields.

With the help of this transformation, we derive a non-perturbative

identity between massless propagators in two different gauges.



in quenched QED3

assuming the finiteness of the perturbative expansion, we state that,

exactly in d = 3, all odd perturbative coefficients, starting with the

third order one, should be zero in any gauge. To check the result,

we calculate the three- and four-loop corrections to the massless

fermion propagator. The three-loop correction is finite and gauge

invariant but, however, the four-loop one has singularities except in

the Feynman gauge where it is also finite. These results explicitly

show an absence of the finiteness of the perturbative expansion

in quenched three-dimensional QED. Moreover, up to four loops,

gauge-dependent terms are completely determined by lower order

ones in agreement with the LKF transformation.



0. Introduction

Gauge invariance governs the dynamics of systems of charged

particles with deep consequences in elementary particle physics and

beyond. Through the gauge principle, it gives rise to gauge field

theories the prototype of which is quantum electrodynamics (QED).

While physical quantities should not depend on this parameter,

precious information can be obtained by studying the ξ-dependence

of various correlation functions.



Such a task can be carried out with the help of the Landau-

Khalatnikov-Fradkin (LKF) transformation

(Landau, Khalatnikov: 1956), (Fradkin:1956)

that elegantly relates the QED fermion propagator SF (p, ξ) and

SF (p, η) in two different ξ and η gauges. In dimensional regular-

ization, it reads:

SF (x, ξ) = SF (x, η) e
i (D(x)−D(0)) ,

where

D(x) = −i ∆ e2 µ4−d ∫ ddp

(2π)d
e−ipx

p4
, ∆ = ξ − η .



Let us show basic steps of (Landau, Khalatnikov: 1956).

Gauge invariance arises in the field theory of charged particles

interacting with an electromagnetic field. Given a gauge transfor-

mation of the potential of electromagnetic field

Aµ → Aµ +
∂ϕ(x)

∂xµ
,

where ϕ(x) is an arbitrary operator function.

The Ψ-function of particle is transformed as follows:

Ψ(x) → Ψ(x)eieϕ(x)

Question: how the Green’s function SF (x) for the particles will

change under such a gauge transformation.



We would like to note that Fourier components of the Green’s

function Gµν(x) for photons can be written in the general case in

the form

Gµν(k) ∼
dt(k)

k2











δµν −
kµkν
k2











+ dl(k)
kµkν
(k2)2

,

where the terms containing dt(k) and dl(k) represent respectively

the transverse and longitudinal parts of the function Gµν.

Moreover, the longitudinal part does not depend upon interaction

with the field.



The Green’s function Dϕ(x) for the ϕ(x) field is connected with

the longitudinal part Gl
µν(x) of the Green’s function for photons:

Gl
µν(x) =

∂2Dϕ(x)

∂xµ∂xν
.

So, Fourier components of the Green’s function Dϕ(x) for the

ϕ(x) field can be written in the form

Dϕ(k) ∼
dl(k)

k4

with dl(k) ∼ 1. It is very unusual Green’s function.



Taking the above transformation for Ψ-function of particle and

using the fact that he operators ϕ(x) represent a free field, Landau,

and Khalatnikov found the gauge transformation for the Green’s

function SF (x) as

SF (x) = St
F (x)× eie

2(Dϕ(0)−Dϕ(x))

where St
F (x) is the Green’s function in the Landau gauge.



The most important applications of the LKF transformation

(Kotikov, Teber: 2019)

From this identity, we find that the corresponding perturbative se-

ries can be exactly expressed in terms of a hatted transcendental

basis that eliminates all even ζ-values. Our construction further

allows us to derive an exact formula relating hatted and standard

ζ-values to all orders of perturbation theory.

G-scheme: (Broadhurst: 1999), (Baikov, Chetyrkin: 2010, 2018,

2019)

ζ̂2s−1 ≡ ζ2s−1 + εK2s−1,2s ζ2s + ε3K2s−1,2s+2 ζ2s+2 + ..., (s ≥ 2)

(Kotikov, Teber: 2019)

K2s−1,2k = b2k−2s+1
(2k − 1)!

(2s− 2)! (2k − 2s + 1)!
,

where b2k−2s+1 are Bernoulli numbers.



(Curtis, Pennington: 1990), (Dong, Munczek, Roberts: 1994,

1996), (Bashir, Kizilersu, Pennington: 1998, 2000), (Burden, Tjiang:

1998), (Jia, Pennington: 2016, 2017)

are related to the study of the gauge covariance of QED Schwinger-

Dyson equations and their solutions. This allows, e.g., to construct

a charged-particle-photon vertex ansatz both in scalar

(Fernandez-Rangel, Bashir, Gutierrez-Guerrero, Concha-Sanchez:

2016), (Ahmadiniaz, Bashir, Schubert: 2016)

and spinor QED (Kizilersu, Pennington: 2009).



Other applications

(Bashir, Raya: 2002), (Jia, Pennington: 2017)

are focused on estimating large orders of perturbation theory.

Indeed, the non-perturbative nature of the LKF transformation al-

lows to fix some of the coefficients of the all-order expansion of

the fermion propagator. Starting with a perturbative propagator

in some fixed gauge, say η, all the coefficients depending on the

difference between the gauge fixing parameters of the two prop-

agators, ξ − η, get fixed by a weak coupling expansion of the

LKF-transformed initial one. Such estimations have been carried

out for QED in various dimensions (see (Bashir, Raya: 2002), (Jia,

Pennington: 2017)), for generalizations to brane worlds (Ahmad,

Cobos-Martinez, Concha-Sanchez, Raya: 2016), (James, A.V.K.,

Teber: 2020) and for more general SU(N) gauge theories (Meer-

leer, Dudal, Sorella, Dall’Olio, Bashir: 2018).



1. LKF transformation

In the following, we shall consider QED in an Euclidean space

of dimension d (d = 4 − 2ε). The general form of the fermion

propagator SF (p, ξ) in some gauge ξ reads:

SF (p, ξ) =
i

p̂
P (p, ξ) ,

where the factor p̂ containing Dirac γ-matrices, has been extracted.

It is also convenient to introduce the x-space representation SF (x, ξ)

of the fermion propagator as:

SF (x, ξ) = x̂ X(x, ξ) .



The two representations, SF (x, ξ) and SF (p, ξ), are related by

the Fourier transform which is defined as:

SF (p, ξ) =
∫ ddx

(2π)d/2
eipxSF (x, ξ) ,

SF (x, ξ) =
∫ ddp

(2π)d/2
e−ipx SF (p, ξ) .



The famous LKF transformation connects in a very simple way

the fermion propagator in two different gauges, e.g., ξ and η. In

dimensional regularization, it reads:

SF (x, ξ) = SF (x, η) e
i (D(x)−D(0)) ,

where

D(x) = −i ∆ e2 µ4−d ∫ ddp

(2π)d
e−ipx

p4
, ∆ = ξ − η .



Note that, in dimensional regularization, the term D(0) is pro-

portional to the massless tadpole T2, the massive counterpart of

which is defined as:

Tα(m
2) =

∫ ddp

(2π)d
1

(p2 +m2)α
.

The tadpole Tα(m
2) ∼ δ(α−d/2) in the massless limit and, thus,

D(0) = 0 in the framework of dimensional regularization. So, the

LKF transformation can be simplified as follows:

SF (x, ξ) = SF (x, η) e
iD(x) .



We may now proceed in calculating D(x) using the Fourier trans-

forms

∫

ddx
eipx

x2α
=

22α̃πd/2a(α)

p2α̃
, a(α) =

Γ(α̃)

Γ(α)
, α̃ =

d

2
− α ,

∫

ddp
e−ipx

p2α
=

22α̃πd/2a(α)

x2α̃
.

This yields:

D(x) = −i ∆ e2 (µ2x2)2−d/2 Γ(d/2− 2)

24(π)d/2
,

or, equivalently, with the parameter ε made explicit:

D(x) =
i∆A

ε
Γ(1− ε) (πµ2x2)ε, A =

αem
4π

=
e2

(4π)2
.

We see that D(x) contributes with a common factor ∆A accom-

panied by the singularity ε−1.



1.2. LKF transformation in momentum space

Let’s assume that, for some gauge fixing parameter η, the fermion

propagator SF (p, η) with external momentum p has the form

SF (p, η) =
1

ip̂
P (p, η) , P (p, η) =

∞
∑

m=0
am(η)Am















µ̃2

p2















mε

.

The am(η) are coefficients of the loop expansion of the propagator

and µ̃ is the renormalization scale:

µ̃2 = 4πµ2 ,

which lies somehow between the MS-scale µ and the MS-scale µ.



Then, using Fourier transforms , we obtain that:

SF (x, η) =
2d−1 x̂

(4π x2)d/2
∞
∑

m=0
bm(η)Am



πµ2x2




mε
,

bm(η) = am(η)
Γ(d/2−mε)

Γ(1 +mε)
.

With the help of an expansion of the LKF exponent, we have

SF (x, ξ) = SF (x, η)e
D(x) =

2d−1 x̂

(4π x2)d/2
∞
∑

m=0
bm(η)Am



πµ2x2




mε

× ∞
∑

l=0











−Am∆

ε











l Γl(1− ε)

l!
(πµ2x2)lε .

Factorizing all x-dependence yields:

SF (x, ξ) =
2d−1 x̂

(4π x2)d/2
∞
∑

p=0
bp(ξ)A

m


πµ2x2




pε
,

bp(ξ) =
p
∑

m=0

bm(η)

(p−m)!











−∆

ε











p−m
Γp−m(1− ε) .



Hence, taking the correspondence between the results for propa-

gators P (p, η) and SF (x, η) , respectively, together with the result

for SF (x, ξ), we have for P (p, ξ):

P (p, ξ) =
∞
∑

m=0
am(ξ)Am















µ̃2

p2















mε

,

where

am(ξ) = bm(ξ)
Γ(1 +mε)

Γ(d/2−mε)

=
m
∑

l=0

al(η)

(m− l)!

Γ(d/2− lε)Γ(1 +mε)

Γ(1 + lε)Γ(d/2−mε)











−∆

ε











m−l
Γm−l(1− ε) .

In this way, we have derived the expression of am(ξ) using a simple

expansion of the LKF exponent in x-space. From this representa-

tion of the LKF transformation, we see that the magnitude am(ξ)

is determined by al(η) with 0 ≤ l ≤ m.



The corresponding result for the p- and∆-dependencies of âm(ξ, p)

can be obtained by interchanging the order in the sums in the re-

sults for P (p, ξ). So, we have

P (p, ξ) =
∞
∑

m=0
âm(ξ, p)Am















µ̃2

p2















mε

,

where

âm(ξ, p) = am(η)
∞
∑

l=0

Γ(d/2−mε)Γ(1 + (l +m)ε

Γ(1 +mε)Γ(d/2− (l +m)ε)











−Am∆

ε











l

×Γl(1− ε)

l!















µ̃2

p2















lε

.



2. QED3

We would like to note that all of the above results may be ex-

pressed in d = 3−2ε with the help of the substitutions ε → 1/2+ε

and e2d=4 µ → e2. The last replacement can also be expressed as

Aµ = α/(4π), with the dimensionful α = e2/(4π).

Let we have initially

P (p, η) =
∞
∑

m=0
am(η)













α

2
√
π p













m














µ̃2

p2















mε

,

where am(η) are coefficients of the loop expansion of the propaga-

tor and µ̃ is the scale

µ̃2 = 4πµ2 ,



So, we have

P (p, ξ) =
∞
∑

k=0
ak(ξ)













α

2
√
π p













k














µ̃2

p2















kε

,

where

ak(ξ) =
k
∑

m=0
(−2∆)k−m am(η) Φ̂(m, k, ε) φ(k −m, ε)

and

Φ̂(m, k, ε) =
Γ(3/2−m/2− (m + 1)ε)Γ(1 + k/2 + kε)

Γ(1 +m/2 +mε)Γ(3/2− k/2− (k + 1)ε)
.

In this way, we have derived the expression of ak(ξ) using a simple

expansion of the LKF exponent in x-space. From this representa-

tion of the LKF transformation, we see that the magnitude ak(ξ)

is determined by am(η) with 0 < m < k.



Very often, however, the subject of the study is not the magnitude

am(ξ) but the p- and∆-dependencies of each magnitude al(η) as it

evolves from the η to the ξ gauge. The corresponding result for the

p- and ∆-dependencies of âm(ξ, p) can be obtained interchanging

the order of the sums. Performing such interchange yields:

P (p, ξ) =
∞
∑

m=0
âm(ξ, p)













α

2
√
π p













m














µ̃2

p2















mε

,

where, now, the coefficients transform as

âm(ξ, p) = am(η)
∞
∑

l=0
Φ̃(m, l, ε)φ(l, ε)













− α∆√
πp













l














µ̃2

p2















lε

,

with

Φ̃(m, l, ε) = Φ̂(m,m + l, ε)

=
Γ(3/2−m/2− (m + 1)ε)Γ(1 + (m + l)/2 + (m + l)ε)

Γ(1 +m/2 +mε)Γ(3/2− (m + l)/2− (m + l + 1)ε)
.



2.1 Coefficients ak(ξ) at ε → 0

The analysis of the coefficients ak(ξ) requires considering the

cases of even and odd values of k separately.

1. In the case of even k values, i.e., k = 2r, the final results

for a2r(ξ) can be expressed as a sum of the contributions a
(i)
2r (ξ)

with i = 1, 2 and 3, i.e.,

a2r(ξ) = a
(1)
2r (ξ) + a

(2)
2r (ξ) + a

(3)
2r (ξ) . (1)



The latter come in-turn from the corresponding contributions of

the initial amplitudes a2s(η), a1(η) and a2s+1(η) as

a
(1)
2r (ξ) =

r
∑

s=0
a2s(η)

× Γ(r − 1/2)Γ(1 + r)

Γ(1 + s))Γ(s− 1/2)

Γ(1/2) (−δ2)r−s

Γ(r − s + 1/2)(r − s)!
;

a
(2)
2r (ξ) =

2

π

r

r − 1/2

(−δ2)r

δ
a1(η) ;

a
(3)
2r (ξ) =

r−1
∑

s=1
a2s+1(η)

(−1)r+s+1

2(s + 1)πε

× Γ(r − 1/2)Γ(1 + r)

Γ(s)Γ(s + 3/2)

Γ(1/2) (−δ)2r−2s−1

Γ(r − s)Γ(r − s + 1/2)
,

where δ =
√
π∆.



2. In the case of odd k values, i.e., k = 2r + 1, we should

consider the cases r = 0 and r ≥ 1 separately.

In the case k = 1, we have the following result:

a
(1)
1 (ξ) = a1(η) −

π

2
δ a0(η) .

The final result for a2r+1(ξ) (for r ≥ 1) can be expressed as a

sum of the contributions a
(i)
2r+1(ξ) with i = 1, 2 and 3, i.e.,

a2r+1(ξ) = a
(1)
2r+1(ξ) + a

(2)
2r+1(ξ) + a

(3)
2r+1(ξ) .



The latter come in-turn from the corresponding contributions of

the initial amplitudes a2s(η), a1(η) and a2s+1(η) as

a
(1)
2r+1(ξ) = [2π(r + 1)ε]

r
∑

s=0
a2s(η) (−1)r+s+1

× Γ(r + 3/2)Γ(r)

Γ(1 + s))Γ(s− 1/2)

Γ(1/2) (−δ)2r−2s+1

Γ(r − s + 1)Γ(r − s + 3/2)
;

a
(2)
2r+1(ξ) = [4(r + 1)ε]

r + 1/2

r
(−δ2)r a1(η) ;

a
(3)
2r+1(ξ) =

r
∑

s=1
a2s+1(η)

(r + 1)

(s + 1)

Γ(r + 3/2)Γ(r)

Γ(s)Γ(s + 3/2)

× Γ(1/2) (−δ2)r−s

Γ(r − s + 1)Γ(r − s + 1/2)
.

We note that, these contributions correspond to the first terms of

the ε-expansion, which is sufficient to analyze the self-consistency

given in the next subsection.



2.2 Self-consistency

Consider am(ξ) with m ≤ 6. Using the results of the previous

subsection, we have:

a0(ξ) = a0(η) , a1(ξ) = a1(η)−
π

2
δ a0(η) ,

a2(ξ) = a2(η)−
4

π
δ a1(η) + δ2 a0(η) ,

a3(ξ) = a3(η)+6πε δ a2(η)− 12ε δ2 a1(η) + 2πε δ3 a0(η) ,

a4(ξ) = a4(η)−
2δ

3πε
a3(η)− 2δ2 a2(η) +

8δ3

3π
a1(η)−

δ4

3
a0(η) ,

a5(ξ) = a5(η)+
45

2
πε δ a4(η)−

15

2
δ2 a3(η)

−15πε δ3 a2(η) + 15ε δ4 a1(η)−
3

2
πε δ5 a0(η) ,

a6(ξ) = a6(η)+
4δ

5πε
a5(η)− 9δ2 a4(η)+

2δ3

πε
a3(η)

+ 3δ4 a2(η)−
12δ5

5π
a1(η) +

δ6

5
a0(η) .



Remarkably, these equations are self-consistent. For example, if we

would like to obtain the expression of am(ξ1) in some gauge with

parameter ξ1 (i.e., the ξ1-gauge), we can derive it directly from

the η-gauge and then proceed in two steps: from the η-gauge to

the ξ-gauge and later from the ξ-gauge to the ξ1-gauge.

Let’s show explicitly this self-consistency in the case of am(ξ1)

with m = 0, 1, 2. The coefficient a0(ξ1) does not change, i.e.,

a0(ξ1) = a0(ξ) = a0(η) .



For the coefficient a1(ξ1), we have (hereafter δ1 =
√
π(ξ1 − ξ),

δ1 =
√
π(ξ1 − η)):

a1(ξ1) = a1(ξ)−
π

2
δ1 a0(ξ)

= (a1(η)−
π

2
δ a0(η))−

π

2
δ1 a0(η) = a1(η)−

π

2
δ1 a0(η) ,

because

δ1 = δ + δ1 .

So, we obtain the expression of a1(ξ1) and it coincides with the

one obtained directly from the η-gauge.



Similarly, the coefficient a2(ξ1) changes as:

a2(ξ1) = a2(ξ)−
4

π
δ1 a1(ξ) + δ21 a1(ξ)

= (a2(η)−
4

π
δ a1(η) + δ2 a0(η))−

4

π
(a1(η)−

π

2
δ a0(η)) + δ21 a1(η) .

The term in factor of a1(η) corresponds to:

−4

π
δ1 −

4

π
δ = −4

π
δ1 .

The term in factor of a2(η) corresponds to:

δ21 + 2δ1δ + δ2 = (δ1 + δ)2 = δ21 .

Taking all the results together, we have:

a2(ξ1) = a2(η)−
4

π
δ1 a1(η) + δ21 a0(η) .

Thus, we derive the expression of a2(ξ1) and it coincides with the

one obtained directly from the η-gauge.



Similar transformations can also be performed for the other co-

efficients ai(ξ1) (i ≥ 2) in a similar way. So, we can obtain a full

agreement between the transformation and the results for ai(ξ1)

obtained directly from the η-gauge.



A central result to the present study that can be derived from

above equations is that, excepting the case of a1(ξ), all a2m+1(ξ)

can be excluded.

Indeed, assuming that quenched QED is both UV and IR finite,

(see, for example, (R.Jackiw, S.Templeton; 1981), (O.M. Del Cima,

D.H.T.Franco, O.Piguet; 2014), (N.Karthik, R.Narayanan; 2017).

and discussion therein)

setting ε = 0 enforces a2m+1(ξ) = 0 for (m ≥ 1).



It follows then that simpler expressions are obtained for a2i(ξ)

with (i ≥ 2):

a4(ξ) = a4(η)− 2δ2 a2(η) +
8δ3

3π
a1(η)−

δ4

3
a0(η) ,

a6(ξ) = a6(η)− 9δ2 a4(η) + 3δ4 a2(η)−
12δ5

5π
a1(η) +

δ6

5
a0(η) .

Importantly, the coefficient a1(ξ) cannot be excluded. In a sense,

the coefficient a1(ξ) (really, a1(ξ)/π) behaves in a similar way to

the even coefficients a2r(ξ).

With the purpose of checking the statement a2m+1(ξ) = 0 for

(m ≥ 1) for d = 3, we plan to perform a direct calculation of the

coefficient a3.



3. Summary I

We have studied the LKF transformation for the massless fermion

propagator of three-dimensional QED in the quenched approxima-

tion to all orders in the coupling α. Our investigations were per-

formed in dimensional regularization in d = 3−2ε Euclidean space.

The transformation am(η) → am(ξ) relates the magnitudes am(ξ)

in ξ-gauge to a combination of initial magnitudes al(η), where

0 ≤ l ≤ m. Studying this relation in dimensional regularization,

we observed that the contributions of odd magnitudes a2t+1(η)

(1 ≥ t ≥ s − 1) to even magnitudes a2s(ξ) are accompanied by

singularities which look like ε−1 in dimensional regularization. In

turn, the even magnitudes a2s(η) produce contributions to odd

magnitudes a2t+1(ξ) (t ≥ s) ∼ ε if t ≥ 1.



There are arguments in favor of ultraviolet and infrared pertur-

bative finiteness of massless quenched QED3

(R.Jackiw, S.Templeton; 1981), (O.M. Del Cima, D.H.T.Franco,

O.Piguet; 2014), (N.Karthik, R.Narayanan; 2017).

Hence, assuming the existence of a finite limit as ε → 0, we find

that, exactly in d = 3, all odd terms a2t+1(ξ) in perturbation the-

ory, except a1, should be exactly zero in any gauge.

This statement is very strong and needs a further check. At the

order α2, analytical expressions for the fermion self-energy diagrams

are well known. However, such results are absent at three-loop or-

der. We plan to study the a3 term, i.e., three-loop diagrams,

directly in the framework of perturbation theory in our future in-

vestigations.



4. Fermion propagator: three- and four-loop coefficients

As it was before, we consider a Euclidean space of dimension

d = 3− 2ε. The general form of the fermion propagator SF (p, ξ)

in some gauge ξ reads:

SF (p, ξ) =
i

p̂
P (p, ξ) .

It is convenient to first express P (p, ξ) as

P (p, ξ) =
1

1− σ(p, ξ)
(2)

where the 1-particle-irreducible (1PI) part, σ(p, ξ), can be repre-

sented as

σ(p, ξ) =
∞
∑

m=1
σm(ξ)













α

2
√
π p













m














µ̄2

p2















mε

.



Here, σm(ξ) are the coefficients of the loop expansion of the

fermion self-energy, α = e2/(4π) is the dimensionful coupling con-

stant and µ̄ is the MS-scale.

Following previous sections, the fermion propagator can be equiv-

alently represented as

P (p, ξ) =
∞
∑

m=0
am(ξ)













α

2
√
π p













m














µ̄2

p2















mε

,

where am(ξ) are now the coefficients of the loop expansion of

P (p, ξ). As it was already shown, this form is convenient to study

the properties of the propagator under the LKF transformation.

Up to four loops, the coefficients am(ξ) and σm(ξ) are related

to each other as

a1 = σ1, a2 = σ2 + σ21, a3 = σ3 + 2σ2σ1 + σ31,

a4 = σ4 + 2σ3σ1 + σ22 + 3σ2σ
2
1 + σ41 .



4.1 Calculational details

In quenched QED at 1-, 2-, 3- and 4-loops we encountered 1, 2,

10 and 74 fermion self-energy diagrams, respectively.

Let’s note that the two-loop diagrams of QED3 were consid-

ered earlier in (R.Jackiw, S.Templeton; 1981), (E.I.Guendelman,

Z.M.Radulovic, O.Piguet; 1983,1984).

These papers mainly focused on the IR divergent two-loop diagram

(with a fermion loop insertion) which is absent in the quenched

case.



The two-loop quenched QED3 fermion propagator was calcu-

lated in (A.Bashir, A.Kizilersu, M.R.Pennington; 2000), (A.Bashir;

2000), (A.Bashir, A.Raya; 2002).

However, three- and four-loop corrections to the quenched QED3

fermion propagator have not been previously computed. As will

be shown in the next subsections, the three-loop correction is finite

but IR singular diagrams do appear at 4-loops in the quenched case

and there are 42 of them, the sum of which will be analyzed in the

following.



In order to compute all of these diagrams and extract from them

the unrenormalized fermion self-energy of QED3 up to four loops,

we first considered the corresponding results for the unrenormalized

QCD quark propagator. The exact expression for the latter, written

in terms of a set of master integrals and valid for arbitrary space-

time dimension d and arbitrary gauge-fixing parameter ξ, is avail-

able up to four loops from (B.Ruijl et al.; 2017), and also shipped

with the FORCER package (B.Ruijl, T.Ueda, J.A.M.Vernaseren;

2017)

designed for the reduction of four-loop massless propagator-type

integrals.



The fermion propagator of QEDd is obtained from this QCDd

result upon performing the following substitutions:

CA = dabcdA dabcdA = dabcdA dabcdF = 0, CF = dabcdF dabcdF = TF = 1 .

After that, the QEDd quenched limit is obtained by setting nf = 0

which discards all diagrams with closed fermion loops.



The main remaining task was then to compute all required propagator-

type master integrals in an ε-expansion around d = 3. This could

be achieved with the help of the Dimensional Recurrence and An-

alyticity (DRA) method (R.N.Lee; 2010)

which expresses the integrals in the form of fast convergent sums.

The latter are then evaluated with high-precision numerical values.

This in turn allows to reconstruct the analytic expression of master

integrals (in any space-time dimension) with the help of the PSLQ

algorithm (H.Ferguson, D.Bailey, S.Arno; 1999)

once an adequate basis of transcendental constants is defined.



We note that near d = 4, such calculations yield the expansions

of all needed masters (R.N.Lee, A.V.Smirnov,V.A.Smirnov; 2012).

The case d = 3 − 2ε is less well known and was considered in

(R.N.Lee, K.T.Mingulov; 2016)

from which the ε-expansion of most of the needed master integrals

for the current calculation is available. The successful reconstruc-

tions around d = 3, were carried out using a basis of transcendental

constants consisting only of multiple zeta values (MZV) and alter-

nating MZVs. As remarked already in the paper, such a basis is

too restrictive to enable the representation of all of the masters and

some of them were left unreconstructed.



In our work we successfully reconstructed all the needed integrals

and found agreement with results of (R.N.Lee, A.V.Smirnov,V.A.Smirnov;

2012) using a basis consisting of MZV and alternating MZVs. On

top of that, we encountered one of the constants left unknown in

(R.N.Lee, K.T.Mingulov; 2016).

By a careful analysis of the representation of one such integrals with

known closed form expressions in the form of the 3F2-functions

(A.V.Kotikov, S.Teber; 2014)

we found that elements of its ε-expansion belong to the set of gen-

eralized polylogarithms (GPLs) with fourth-root of unity alphabet.



Extending our PSLQ basis to include the full set of GPLs with

fourth root of unity arguments we have

G(p; 1, 1/2, 1, 1/2, 1) =
1

(4π)d
8

3π
(C1 + O(ε1))

µ2ε

p2(1+2ε)
,

where

G(p;α1, α2, α3, α4, α5)

=
∫ ddk1d

dk2
(2π)2d

1

k
2α1
1 k

2α2
2 (p− k2)2α3(p− k1)2α4(k1 − k2)2α5

.

and

C1 = Cπ2 + 24Cl4







π

2





 ,

with C = Cl2(π/2) is Catalan’s constant and Cln(θ) is Clausen’s

function (Cl2k(θ) = Im Li2k


eiθ


). As can be understood from

the above result, the required extension of the basis of transcen-

dental constants includes polylogarithms with fourth-root of unity

argument.



4.2 Results for the fermion self-energy

We now present our results for σm(ξ) which are represented as

σm(ξ) = σm(0) + ξ σ̃m(ξ) ,

where we have explicitly separated the part independent from ξ

which corresponds to the full result in the Landau gauge.



For the first two orders of the ε-expansion, we have

σ1(0) = 0 ;

σ2(0) = π















3π2

4
− 7− ((1− 3 l2)π

2 + 12)ε















;

σ3(0) = π5/2














43π2

4
− 105 + ε



























2(185− 105 l2 + 137ζ3)−
π2

6
(451− 171 l2)









































;

σ4(0) = π2




















43

6
π2 − 70











1

ε
+ σ̄4 +

5954

3
+
173

18
π2 − 513

10
π4











,

where σ̄4 contains the most complicated part

σ̄4 = 209 l42 + 5016 a4 + 4264Cl4(π/2) +











533

3
C− 930 l2











π2 +
2078

3
ζ3 ,

and

l2 = ln 2, a4 = Li4(1/2), ζn = Lin(1) ,

where Lin are polylogarithms.



With the same accuracy, we have for the coefficients σ̃m(ξ)

σ̃1(ξ) = −π3/2

2
(1− 2(1− l2)ε) ;

σ̃2(ξ) = π ξ















1− π2

4
− (4− (1− l2)π

2)ε















;

σ̃3(ξ) = π5/2 [
3π2

4
− 7 +















1− π2

8















ξ2 + ε{−40− 14l2 +
π2

2
(4 + 9l2)

+















2 l2 − 4 +
3π2

4
(1− l2)















ξ2}] ;

σ̃4(ξ) = π2[















70− 43π2

6















1

ε
+
520

3
− π2

9
(881 + 42l2) +

129π4

27
− 548

3
ζ3

+ξ















28− 33π2

4
+
9π4

16















+ ξ3














−4

3
+
3π2

4
− π4

16















] .



From the above equations, we notice that

σ4(ξ) = π2










43

6
π2 − 70











(1− ξ)

ε
+ O(ε0) ,

i.e., the total four-loop contribution is finite in the Feynman gauge.



4.3 Results for the fermion propagator

As in the case of σm(ξ), it is convenient to present the results

for am(ξ) in the form

am(ξ) = am(0) + ξ ãm(ξ) ,

where we have also explicitly separated the part independent from

ξ which corresponds to the full result in the Landau gauge.

Since σ1(ξ) ∼ ξ, we see that ai(0) = σi(0) for i ≤ 3. For a4(0),

we have

a4(0) = σ4(0) + π2














3π2

4
− 7















2

= π2




















43

6
π2 − 70











1

ε
+ σ̄4 +

6101

3
− 8

9
π2 − 4059

80
π4











.



With the same accuracy, we have for the coefficients ãm(ξ)

ã1(ξ) = σ̃1(ξ) = −π3/2

2
(1− 2(1− l2)ε) ; ã2(ξ) = π ξ(1− 4ε) ;

ã3(ξ) = π5/2 ε















43π2

4
− 105 + 2ξ2















;

ã4(ξ) =
π2

3
[















210− 43π2

2















1

ε
+ 520 +

2π2

3
(32− 21 l2)− 548ζ3

+6ξ















7− 3π2

4















− ξ3]

From the above results, we see that the coefficients ãm(ξ) (m =

2, 3, 4) have simpler forms than the corresponding coefficients σ̃m(ξ).

Moreover, we notice that

a4(ξ) = σ4(ξ) +O(ε0) =
2π2

3















43π2

4
− 105















(1− ξ)
1

ε
+O(ε0) ,

i.e., the total four-loop contribution is finite in the Feynman gauge.



5. LKF transformation

The LKF transformation relates the coefficients ak(ξ) and am(η)

as

ak(ξ) =
k
∑

m=0
(−2∆)k−m am(η) Φ(m, k, ε) φ(k −m, ε),

where

Φ(m, k, ε) =
Γ(3/2−m/2− (m + 1)ε)Γ(1 + k/2 + kε)

Γ(1 +m/2 +mε)Γ(3/2− k/2− (k + 1)ε)

and

φ(l, ε) =
Γl(1/2− ε)

l! (1 + 2ε)lΓl(1 + ε)
.



5.1 Comparison with the perturbative results up to four loops

Consider am(ξ) with m ≤ 4. Keeping only the first two orders

of the ε-expansion, we have:

a0(ξ) = a0(η) = 1 , a1(ξ) = a1(η)−
π

2
δ (1 + 2ε(l2 − 1)) a0(η) ,

a2(ξ) = a2(η)−
4

π
δ (1− 2ε(l2 + 1)) a1(η) + δ2 (1− 4ε) a0(η) ,

a3(ξ) = a3(η) + 6πε δ a2(η)− 12ε δ2 a1(η) + 2πε δ3 a0(η) ,

a4(ξ) = a4(η)−
2δ

3πε
(1 + 2ε(3− l2)) a3(η)− 2δ2 a2(η)

+
8δ3

3π
a1(η)−

δ4

3
a0(η) ,

where δ =
√
π∆.



Setting η = 0, i.e., choosing the initial gauge as the Landau

gauge, we can see that our results for ãm(ξ) are completely deter-

mined by al(ξ), (l < m), i.e., by the coefficients of lower orders in

agreement with the properties of the LKF transformation.

Moreover, these results are in full agreement with the perturbative

results presented in the previous section.



5.2 Beyond four-loops

The singularity of the four-loop coefficient a4(ξ) is ∼ (1 − ξ),

i.e., the fermion propagator including up to four-loop corrections

is finite in the Feynman gauge. This intriguing fact calls for a closer

examination of higher order contributions and, as a first try, we will

proceed by using the LKF transformation.

We therefore consider a5(ξ) and a6(ξ):

a5(ξ) = a5(η) +
45

2
πε δ a4(η)−

15

2
δ2 a3(η)− 15πε δ3 a2(η)

+15ε δ4 a1(η)−
3

2
πε δ5 a0(η) ,

a6(ξ) = a6(η) +
4δ

5πε
a5(η)− 9δ2 a4(η) +

2δ3

πε
a3(η) + 3δ4 a2(η)

−12δ5

5π
a1(η) +

δ6

5
a0(η) .



We may then take the η-gauge as the Feynman gauge and con-

sider a5(ξ) and a6(ξ) with accuracies O(ε) and O(ε0), respectively.

This yields:

a5(ξ) = a5(1)−
15

2
π (ξ − 1)2 a3 + O(ε) ,

a6(ξ) = a6(1) +
4(ξ − 1)

5
√
πε

a5(1) +
2
√
π(ξ − 1)3

ε
a3 + O(ε0) ,

where we took into account the fact that the finite part of a3 is

gauge-independent.

From these results, we see that the LKF transformation gives in-

formation about the ξ-dependence of a5(ξ) and a6(ξ), as expected.

Some singularities may still be hidden in a6(1) and further under-

standing of the singular structure of a6(ξ) requires explicit 5- and

6-loop computations (at least in a specific gauge).



10. Summary II

We have examined the perturbative structure of the massless

fermion propagator of quenched QED3 up to four loops.

Our study was motivated by our recent publication where the

gauge covariance of the fermion propagator of quenched QED3 was

studied using the LKF transformation in dimensional regularization

(d = 3 − 2ε). This non-perturbative transformation revealed an

interesting parity effect, whereby the contributions of odd orders,

starting from the third one, to even orders are accompanied by

singularities taking the form of poles, ε−1, in dimensional regular-

ization. In turn, even orders produce contributions to odd ones,

starting from the third order, which are ∼ ε.



Following arguments in favor of the IR (and ultraviolet) perturba-

tive finiteness of massless quenched QED3 (R.Jackiw, S.Templeton;

1981), (O.M. Del Cima, D.H.T.Franco, O.Piguet;2014), (N.Karthik,

R.Narayanan;2017)

and therefore assuming the existence of a finite limit as ε → 0,

we concluded in the previous paper that, exactly in d = 3, all odd

coefficients a2t+1(ξ) in perturbation theory, except a1, should be

exactly zero in any gauge.

This statement needed a check since analytical expressions for the

fermion self-energy diagrams were known only at two-loop order.



This is what we have done in the present studying by comput-

ing the three- and four-loop corrections to the massless fermion

propagator, i.e., the coefficients a3(ξ) and a4(ξ), directly in the

framework of perturbation theory. We found that a3(ξ) is finite

and gauge-independent when ε → 0. The coefficient a4(ξ) is, on

the other hand, singular which violates the status of IR perturbative

finiteness of massless quenched QED3. The obtained singularity is

such that all of its gauge-fixing dependent terms are entirely deter-

mined by lower order contributions in agreement with the properties

of the LKF transformation.

In closing, let’s note that the four-loop singularities were found

to contribute to the coefficient a4(ξ) with a factor ∼ (1− ξ) and,

thus, a4(ξ) is finite in the Feynman gauge. The reason for this

intriguing effect is not clear at present and its elucidation requires

additional research.


