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Null Strings

A null cosmic string is a one-dimensional object whose points move along
trajectories of light rays, orthogonally to the string itself.
A. Schild. Classical Null Strings. Phys. Rev. D, 16:1722, 1977. (Schild
equations)
Null strings are characterised by their optical properties [a complex optical
scalar which is determined by an analogue of the Sachs’ optical equation].
D.V. Fursaev, Phys. Rev. D103 (2021) no.12, 123526
The origin of null strings may be related to physics of fundamental
strings at the Planckian energies.
F. Xu, JHEP 10 (2020) 045
• The study is motivated by possible effects of null strings in cosmology.
World-sheets of null strings develop caustics accumulating energy.
E.A. Davydov, D.V. Fursaev, V.A.Tainov, Phys. Rev. D105 (2022) no.8,
083510



Null strings (massless, tensionless)

From a massive cosmic string at rest along z-axis

ds2 = −dt2 + dz2 + dr2 + (1 − 4Gµ)2r2dΘ2, r2 = x2 + y2

−→ Aichelburg-Sexl boost (Penrose limit)

cosh χ = (1 − v2/c2)−1/2 → ∞, E = mc2 cosh χ → finite

−→ Kerr-Schield metric

ds2 = −dudv + ω|y |δ(u)du2 + dy2 + dz2, ω ≡ 8πGε

ε - energy per unit length, u = t − x , v = t + x .

C. Barrabes, P.A. Hogan, W. Israel, Phys.Rev. D66 (2002) 025032.



The problem of particle (wave) in the field of null cosmic strings is related
to the movement in the impulsive (shock) gravitational wave background.
R. Penrose, Part of General relativity : Papers in honour of J.L. Synge,
101-115 (1972)
The gravitational shock wave of a massless particle attracted a
considerable interest in the context of black hole formation in high energy
particle collisions.
T. Dray and G. ’t Hooft. NPB, 253:173–188, 1985. G. ’t Hooft., Phys.
Lett. B, 198:61–63, 1987.
• To our knowledge the field effects in the background of a null cosmic
string are not yet comprehensively studied.
Classical and quantum FT for scalar fields only on general shock wave
background was given by C. Klimcik [PLB’1988], and in the scatterring
matrix context by C.O. Lousto, N. G. Sanchez, Nucl.Phys.B 355 (1991)
231-249.

• Our aim is to derive some physical effects using the holonomy property
of the null string spacetime.



Null string dynamics
We consider a null straight string moving in the Minkowski spacetime in
the direction of x axes and parallel to z axes,

ds2 = −dudv + ω|y |δ(u)du2 + dy2 + dz2, ω ≡ 8πGE .

The delta-function in the metric indicates a singularity of the coordinate
chart along the hypersurface H : u = 0, which is the event horizon of the
string.

• The string equations of motion are t − x = 0, y = 0.

• Null string world surface is u = y = 0.



Null Holonomies

• The null string yields the nontrivial null holonomy. The parallel
transport of a vector V along a closed contour around the string results
in a null rotation,

V ′ = M(ω)V , ω ≡ 8πGE .

Null holonomy belongs to the parabolic subgropup of the Lorentz
transformations (null rotations), x ′µ = Mµ

ν (ω)xν , and acts on u, v , y , z
coordinates in R1,3 as follows:

u′ = u, v ′ = v + 2ωy + ω2u, y ′ = y + ωu, z ′ = z .

The group parameter of the holonomy, ω ≡ 8πGE , is determined by the
energy of a string per unit length, E .
These transformations do not move points on the string world surface.
M. van de Meent, Geometry of Massless Cosmic Strings, Phys. Rev. D87
(2013) no.2, 025020, e-Print: arXiv:1211.4365 [gr-qc].



The Holonomy Method
• We decompose the space-time into two parts by the light surface
u = 0. This surface is the string event horizon H, as the events that
occur in the half-space u > 0 do not affect the events in the area u < 0,
and vice versa.
For particles and light rays we define the ingoing trajectories ( u < 0 )
and the outgoing trajectories ( u > 0).
We consider two parts of the event horizon, left and right with respect to
the string: HL (y < 0), and HR (y > 0).
• To describe the outgoing fields, we introduce a coordinate chart
which has a cut on HL.
• The string horizon is considered as a Cauchy hypersurface where initial
data for outgoing trajectories are determined. The ’right’ trajectories
(y > 0) behave smoothly across H while the ‘left’ trajectories (y < 0)
are shifted along the v coordinate and change their direction under the
null rotation.
• At y < 0, u = 0, the coordinate transformations are reduced to

v ′ = v + 2ωy , y < 0.

D. V. Fursaev, Phys. Rev. D, 96(10):104005, 2017.



Cauchy data for fields on the string horizon

The holonomy method allows one to study differenr fields (fibre bundles)
over the null string geometry.
We introduce Cauchy data on the string horizon H for fields in u > 0,

ϕ(x) |H±= ϕ̂±(x) , x ≡ (v , y , z),

where
ϕ̂+(x) = ϕ̄(x̄) |H+ , ϕ̂−(x) = S(ω)ϕ̄(x̄) |H− ,

and ϕ̄ is the (ingoing) field at u < 0. The element S(ω) belongs to some
representation of the Lorentz group.
These transition conditions guarantee that physical quantities measured
by ’left’ observers behave smoothly across the horizon while the factor
S(ω) ensures the required holonomy.
Here ϕ stands as a vector gauge field or a symmetric second rank tensor
field corresponding to a gravity wave.



Cauchy data for fields on the string horizon
The equations of motion for ϕ (under appropriate gauge conditions) are

□ϕ(x) = j(x) ,

where □ = ∂µ∂µ and j(x) is an external source.
For waves propagating in the string spacetime the problem is
homogeneous (j = 0), and with the given Cauchy data the solution in the
domain u > 0 is given by

ϕ(x) =
∫

y ′>0
dx′D(u, x − x′)ϕ̂+(x′) +

∫
y ′<0

dx′D(u, x − x′)ϕ̂−(x′) ,

where the D-function is the solution to the following problem:

□D(x) = 0 , D(u, x) |u=0= δ(3)(x) ,

D(u, x) = 1
(2π)3

∫
d3pe ip·x , D(x) = 1

π

∂

∂v δ(x2) ,

where x2 = xµxµ = −uv + y2 + z2, p · x = pµxµ.



The solution to the inhomogeneous problem in domain u > 0 can be
written as

ϕ(x) = ϕ1(x) + ϕ2(x) .

Here ϕ1(x) coincides with a standard solution in R1,3 (without the string)
taken at u > 0. Let ϕ̂1(x) = ϕ1(u = 0, x) and ϕ̂1,± are corresponding
data on H±.

Then ϕ2(x) is a solution to the a homogeneous problem

□ϕ2(x) = 0 , ϕ2(u = 0, x) = ϕ̂2(x) , ϕ̂2,±(x) = ϕ̂±(x) − ϕ̂1,±(x) .

The Cauchy data for ϕ2(x) ensure the required data for the solution ϕ(x).

• It is clear from the above construction that most physical effects are
determined by partial refraction of waves on the string horizon H− as
seen by observers crossing H+.



Refraction of EM waves on the string horizon
Consider the scattering of electromagnetic waves by null strings. The
corresponding equations and gauge-fixing conditions are

□Aµ = 0 , ∂A = 0 ,

We use the Lorentz gauge conditions since they are invariant under
holonomy transformations on H and, therefore, can be imposed in the
whole spacetime of a null string.
Outside the string world-sheet the spacetime is Minkowsky

ds2 = −dvdu + dy2 + dz2 , □ = −4∂u∂v + ∂2
y + ∂2

z .

Before scattering on the string a monochromatic plane wave has a form

Āµ(x̄) = ℜ (Ēµ e i k̄·x̄ ) , u < 0,

where Ēµ is some complex polarization vector, k̄µĒµ = 0. The incoming
data is denoted with the bar.



The Cauchy data on H are defined by ingoing fields,

Â+,µ(x) = Āµ(x̄) |H+ , Â−,µ(x) = M ν
µ (ω)Āν(x̄) |H− ,

where M ν
µ = ηµµ′ηνν′Mµ′

ν′ .
On the right coordinate chart there is no transformation of wave crossing
H+. If the holonomy transformations are applied to Āµ(x̄) on H− the
wave leaves H− with the transformed momentum

kµ
− = Mµ

ν (ω) k̄ν .

The transformed momentum k− is introduced to satisfy the condition
k̄ · x̄ |H−= k− · x−.
Since the velocity of the left observers change in the corresponding way,
the observers do not see the transformation of the wave.

For the right observers the wave on H− changes its energy and looks
refracted.



Refraction of EM waves on the string horizon
If E and k⃗ are, respectively, the energy and the momentum of the
incoming wave, the angle φrefr of the refraction and the energy of the
refracted wave are

cos φrefr = (k⃗−k⃗)
E−E = 1

EE−

[
E 2 + ω2

2 (Ekx − (kx )2) + ωEky
]

E− =
(

1 + ω2

2

)
E − ω2

2 kx + ωky .

The waves traveling along the string axis z are not refracted.

A general solution describing physical effects caused by the refraction of
waves on the string horizon can be used for EM or gravity waves. In case
of the monochromatic waves each component of Aµ or hµν can be
treated as a scalar wave. Therefore, if one neglects effects related to
polarizations common features of scattering problem can be understood
by studying a scalar field theory.



Interference wedge
Consider a real massless scalar field ϕ, with equation

□ϕ = 0 ,

which behaves as a monochromatic wave at u < 0, ϕ̄(x̄) = e i k̄·x̄ .
In the domain u > 0 the scattered wave is a superposition of waves,

ϕ(x) = ϕ+(x) + ϕ−(x) ,

coming from H+ and H−, respectively.

ϕ±(x) = [θ(±f±) + ε(±f±)G(g±)] exp(ik±x) , kv > 0 (1)
ϕ±(x) = [θ(∓f±) + ε(∓f±)G∗(−g±)] exp(ik±x) , kv < 0 . (2)

where θ and ε are the step and the sign functions, and

f (k, x) = uky + 2kv y , g(k, x) = f 2(k, x)
4kv u ,

where f , g are dimensionless functions, f± = f (k±, x), g± = g(k±, x) .



Near-field and far-field effects

Near the string worldsheet, u → 0, g → 0 (a ’near-field zone’) the
scattered wave is not monochromatic due to the presens of the G-factor.
In a ’far-field zone’, g ≫ 1, the wave has a simple form. For kv > 0, it is

ϕ(x) = θ(f+) exp(ik+x) + θ(−f−) exp(ik−x) + ϕtail(x) ,

ϕtail(x) = ε(f+) 1√
4πg+

e ik+x+iφ+ + ε(−f−) 1√
4πg−

e ik+x+iφ− + O(g−3/2
± ) ,

where φ± = g± + π/4. The ’tails’ ϕtail(x) are determined by the G-factor
whose amplitudes are suppressed by factors g−1/2

± .
|g±| ∼ L/λ where λ is a wave length and L is a distance related to
position of the observer with respect to the string trajectory.

Physical effects in the far-field zone are interesting for the distant
observers. Right observers crossing H+ interpret the solution as a
refraction of the left wave on H−.



The boundaries of diffraction

The surfaces f±(x) = 0, determine boundaries of diffraction of right and
left parts of the wave behind the string. The normal vectors n± to these
surfaces, df± = nµdxµ, are orthogonal to the wave vectors

(n± · k±) = 0 .

The surfaces f±(x) = 0 intersect at the string world-sheet.
The domains of the difraction overlap. In the overalp region, f+ > 0,
f− < 0, u > 0, the left and right waves interfere since the wave vectors
k± are related by the nontrivial null rotation, k− = M(ω)k+.
Thus, the null string leaves behind an interference wedge. This physical
effect is similar to the effect of massive and null strings which leave
behind the regions of overdensities of non-relativistic matter.



The boundaries of diffraction

The interference wedge is shown for the string at the moment t = t0.
The string is stretched along the z axis, orthogonal to figure plane and is
located at x = t0, y = 0. The parameters for the wave are such that
ky > 0, k−y = ky − 2ωkv > 0.



The overlap region

To demonstrate to existence of the overlap region we fix the moment
t = t0, put k+ = k, and suppose that ky > 0, k−y = ky − 2ωkv > 0. In
coordinates x and y conditions f+ > 0, f− < 0, u > 0 look as

x−(y) < x < x+(y) , x < t0 ,

x+(y) = t0 + 2kv y
ky

, x−(y) = t0 + 2kv y
ky − 2ωkv

.

These conditions hold for y < 0. The angle of the interference wedge,
φintf, is the angle between the lines x = x±(y)

cos φintf = ky (ky − 2ωkv ) + 4k2
v

(k2
y + 4k2

v )1/2((ky − 2ωkv )2 + 4k2
v )1/2 .

At small ω, φintf = O(ω2). The interference wedge exists at ky = 0 when
cos φintf = (1 + ω2)−1/2.



The energy density of a real scalar field

Eω(x) = T00(x) =
(
∂uφ(x)

)2 +
(
∂v φ(x)

)2 + 1
2

(
∂y φ(x)

)2 + 1
2

(
∂zφ(x)

)2
.

Fig.: instant energy density in the (x , y) plane orthogonal to the string
located at x = t0 = 2, y = 0, ω = 0.5; coordinates are given in
dimensionless units (kv = 1). To get an observable intensity map one has
to compute the time average of the energy density. Left: the parameters
for the wave are such that kv > 0, k−y = ky − 2ωkv > 0. Right: ky = 0,
cos ϕint = (1 + ω2)−1/2.



Electrodynamics near null strings
Consider electromagnetic fields created by charges moving near null
strings. The Maxwell equations in the region below the string horizon,
u < 0, are

□Āµ = j̄µ ,

j̄µ(x) = ρ̄(x)ūµ(x) ,

where ūµ are 4-velocities of charges distributed with a density ρ̄; we use
the Lorentz gauge ∂Ā = 0.
Above the string horizon, u > 0, one has the boundary problem (for the
R coordinate chart)

□Aµ = jµ ,

Âµ
+(x) = Āµ(x̄) |H+ , Âµ

−(x) = Mµ
ν(ω)Āν(x̄) |H− ,

ĵµ
+(x) = j̄µ(x̄) |H+ , ĵµ

−(x) = Mµ
ν(ω)̄jν(x̄) |H− ,

The conditions for the current ĵ±,µ on H± ensure continuity of the
current on the horizon from the point of view of observers crossing H.



Electrodynamics near null strings

The electric charge Q on null surfaces u = C ,

Q =
∫

u=C
dΣµjµ(u, x) =

∫
u=C

ju(u, x)dvdydz ,

conserves across H, since ju component does not change under null
rotations.
The solution to is

Aµ(x) = Aµ
1 (x) + Aµ

2 (x) ,

where Aµ
1 (x) is a solution if inhomogenises problem with corresponding

data Âµ
1,± on H±, and Aµ

2 (x) is a solution to the homogeneous problem

□Aµ
2 = 0 , Aµ

2 (u = 0, x) = Âµ
2 (x) , Âµ

2,±(x) = Âµ
±(x) − Âµ

1,±(x) .



Field of a single charge
How does a null string change the electric field of a charged particle?
An electric charge is at rest below the horizon as a point with coordinates

xe = 0, ye = a, ze = 0, a > 0.

The corresponding current is j̄µ(x) = eδ(3)(x⃗ − x⃗e)uµ, with uµ = δµ
0 .

The field of the particle below H is

Āµ = e
4π

δµ
0√

x2 + (y − a)2 + z2
.

The considered particle moves freely and crosses H+ part of the horizon.
In the R-chart nothing happens with the 4-velocity of the particle at
u = 0. Therefore,

jµ(x) = j̄µ(x) , u > 0 ,

and the inhomogeneous part of the solution can be taken as

Aµ
1 (x) = Āµ(x) .



Field of a single charge
The homogeneous part solves the wave equation with the following
Cauchy data:

Âµ
2,+(x) = 0 , Âµ

2,−(x) = Âµ
−(x)−Âµ

1,−(x) =
[
Mµ

ν(ω)Āν(x̄) − Āµ(x)
]

|H− .

The homogeneous solution is

Aµ
2,−(u, x) = − 1

πu

∫ 0

−∞
dy ′

∫ ∞

−∞
dz ′ aµ(u, x, y ′, z ′) ,

au(u, x, y ′, z ′) = ∂v [f (v − ∆ − 2ωy ′, y ′, z ′) − f (v − ∆, y ′, z ′)] ,

av (u, x, y ′, z ′) = ∂v
[
(1 + ω2)f (v − ∆ − 2ωy ′, y ′, z ′) − f (v − ∆, y ′, z ′)

]
ay (u, x, y ′, z ′) = ω∂v f (v − ∆ − 2ωy ′, y ′, z ′)
az(u, x, y ′, z ′) = 0,

f (v , y , z) = e
4π

1√
v2/4 + (y − a)2 + z2

, ∆ = 1
u ((y −y ′)2 +(z −z ′)2) ,



Scalar potential A0 of a point charge

Scalar potential A0 of a point charge is disturbed by a null string passing
in x direction, µ = 1. The time variable changes as
t/a = 0.01, 1, 2, 4, 6, 20. The last picture corresponds to undisturbed
Coulomb potential of a charge placed in the point (0, 1, 0).



Observable effects
• The near field (u → 0)
The effects are complicated because of the form-factor which appears in
the solution due to the string. After scattering on the string a
monochromatic wave is not monochromatic anymore.
• The far field (u → ∞)

A = A+ + A−,

A± = θ(±f±)e ik±
µ xµ

+ "tail", "tail" ∼ O(u−1/2).

A polarized wave Ê e ikx transforms to

θ(±f+)Ê+ e ikµ
+ xµ + θ(−f−)Ê− e ikµ

−xµ + "tail",

where k+ = k, Ê+ = Ê for the right observer, and

k− = M(ω)k, Ê− = S(ω)Ê .



Observable effects in far field region

From an observational point of view, the interaction of a null string with
electromagnetic and gravitational waves, is of interest. When they are
scattered by a null string the following effects emerge:
• refraction of the part of the wave that propagates behind the passing
string with respect to the observer. All "left" vectors turn in the same
way due to holonomy.
• diffraction on the string, when the "right" part of the wave partially
overlaps the "left" region. Diffraction is accompanied by interference, and
depends on the sting energy and wavelength (conditions f± = 0);
• perturbation of the electric field of a charged particle
• self force similar to the self-force acting on a point charge in the
spacetime of a massive static cosmic string
B. Linet, PRD 33. 1833, 1986



Conclusion

• We have developed the holonomy method for fields. It allows to study
different fields (fiber bundles) in the null string background.
• We predict physical effects related to wave propagating in the
gravitational field of a straight null string in Minkowsky spacetime R1,3.
• Gravitational effects in the the null string background is work in
progress.
Thank you!


