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• Mathematically, the cosmological constant term comes to ou r
mind first when we want formulating covariant action for grav ity

Sgrav = − 1
16πG

∫

d4x
√−g (R + 2Λ) , ρΛ =

Λ

8πG
.

The greatiest legend about CC: The CC term can be calculated
in the framework of Quantum Field Theory (QFT). And it has a
strange value, about 120 orders of magnitude greater than ρ

obs
Λ .

Real deal: In QFT we can not derive any independent, massive
or massless, parameter from the first principles.

CC is not an exception. Naive calculation typically gives an
infinite value for a massive parameter, with both potential a nd
logarithmic-type divergences. After infinity is subtracte d, one
has to fix the finite value, that requires a measurement.
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General structure of renormalization in curved space.

Starting from the paper R. Utiyama & B. DeWitt, J.M.Phys. (1962),
we know that curved-space counterterms satisfy two conditi ons:

• They are covariant using appropriate regularization.

• They are local functionals of the metric.

Renormalizable theory of matter fields on classical curved
background requires classical action of vacuum

Svac = SHE + SHD , SHE = − 1
16πG

∫

d4x
√−g (R + 2Λ) .

The theory without independent vacuum parameter Λ = Λvac is
inconsistent as loops of massive fields give CC-type divs.

If Λvac ≡ 0 , this kind of divergences cannot be removed by
renormalization and we have a kind of theoretical disaster.

Of course, the same is true for all other terms in Svac , including
the Einstein-Hilbert and the fourth-derivative terms form ing SHD .

Ilya Shapiro, Effective quantum gravity, cosmological con stant and the Standard Model of particle physics



What is the required magnitude of the vacuum CC?

Within the renormalizable theory of matter fields on classic al
curved background, one can expect running of the essential
physical parameters. Consider the RG running for CC and G:

(4π)2 µ
dρvac

Λ

dµ
=

Nsm4
s

2
− 2Nf m

4
f , ρΛ = ρvac

Λ =
Λvac

8πGvac

(4π)2 µ
d

dµ

( 1
16πGvac

)

=
Nsm2

s

2

(

ξ − 1
6

)

+
Nf m2

f

3
.

It is unclear how these equations can be used in cosmology,
where the energy scale is much smaller than the masses.

However, even the UV running means that ρvac
Λ cannot be

smaller then the fourth power of a typical mass of the theory.

Thus, the natural value from the MSM perspective is

ρvac
Λ ∝ M4

F ∝ 108 GeV 4 .
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Induced CC from SSB in the Standard Model.

In the stable point of the Higgs potential V = −m2φ2 + fφ4 , we
meet ρind

Λ = 〈V 〉 ≈ 108 GeV 4 – of the same magnitude as ρvac
Λ !

This is induced CC, similar to the one found by Zeldovich (196 7).
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The observed CC is a sum ρobs
Λ = ρvac

Λ + ρind
Λ . Since ρvac

Λ is
an independent parameter, the renormalization condition i s

ρvac
Λ (µc) = ρobs

Λ − ρind
Λ (µc) .

Here µc is the energy scale where ρobs
Λ is “measured”.
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Finally, the main CC relation is ρobs
Λ = ρvac

Λ (µc) + ρind
Λ (µc) .

The ρobs
Λ which is likely observed in SN-Ia, LSS and CMB is

ρobs
Λ (µc) ≈ 0.7 ρ0

c ∝ 10−47 GeV 4.

The CC Problem is that the magnitudes of ρvac
Λ (µc) and ρind

Λ (µc)
are a huge 55 - 56 orders of magnitude greater than the sum!

Obviously, these two huge terms do cancel. “Why they cancel
so nicely” is the main (great) CC Problem (Weinberg, 1989).
The origin of the problem is the huge difference between
the MF scale of ρind

Λ and ρvac
Λ vs the µc scale of ρobs

Λ .

CC Problem is a sort of (the most difficult) hierarchy problem .

There were many attempts to solve this problem. The general
impression is that it is impossible without moving the
fine-tuning from CC to another sector of the theory.

• In what follows, we accept that the CC fine tuning takes place
and will just recognize this as a fact.

Ilya Shapiro, Effective quantum gravity, cosmological con stant and the Standard Model of particle physics



It is remarkable that the theoretical predictions for the tw o
ingredients have the same order of magnitude.

ρobs
Λ = ρvac

Λ (µc) + ρind
Λ (µc).

In the particle physics units, the value ρobs
Λ ≈ 10−47 GeV4 .

In MSM, we need about 55-56 orders fine-tuning for ρΛ(µ0).

Assuming a symmetry breaking at energy scales beyond MSM,
the amount of fine tuning may significantly increase.

The CC problem is a real mystery, as the fine tuning can be
violated even by very small changes, e.g., in Yukawa couplin gs
via one-loop or higher-loop corrections (up to 21 loops!).

Even a small mismatch in ρΛ(µ0) may lead to either a negative,
zero or too big (100 times greater) positive value of ρobs

Λ .
All these options contradict our own existence:

S. Weinberg, Anthropic bound on the cosmological constant, (1987).

And there is still a chance of the renormalization group runn ing
of CC, even in the “deep IR”.
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Brief review of renormalization group
The renormalization group is a useful and economic way to
describe quantum corrections. Thus, it is quite natural try ing
to use it in quantum gravity (QG).

As an example, consider a fermion loop effect in QED,

L = − 1
4e2 FµνFµν + ψ̄

[

iγµ(∂µ − Aµ)− m
]

ψ.

With the one-loop correction, we get, approximately,

L = − 1
4e2 Fµν

[

1 − β ln
(

✷+ m2

µ2

)

]

Fµν .

In the IR, when (Euclidean) momentum is k2 ≪ m2, this
becomes an irrelevant redefinition of e.

However, in the UV, when k2 ≫ m2, there is an effective running:

e2(k) =
e2

0

1 − β ln(k2/µ2)
. β =

e2

6π2 .
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Renormalization group running for ρvac
Λ or ρind

Λ

may break down the fine tuning and produce significant effect,
even if the running is very weak compared to basic values.

In semiclassical theory, such a running may take place only
because of the effects of massive particles, and it is suppos ed
to be weakened by AC-like decoupling ( Gorbar & Sh. 2003 ...).

This interesting subject was discussed in many papers, e.g.
I.Sh., J. Solà, JHEP 02 (2002) 006; Phys. Lett. B682 (2009) 105.

• Another possibility is the running in QG, i.e., in a quantum
theory of the metric, which is the main subject of this talk.

There are a few serious challenging problems on this way,
namely 1) Maintain covariance; 2) Apply renormalization group
in the nonrenormalizable theory such as quantum gravity;
3) Extract the unambiguous beta functions.

Let us discuss these issues in the effective QG framework.
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• Gauge invariant renormalizability in QG

Covariant action of gravity is S =

∫

d4x
√−g L(gµν) .

where L(gµν ) can be L(gµν ) = −κ−2(R + 2Λ) or another.

The gauge transformation δgµν = Rµν,αξ
α. The gauge invariance:

δS
δgµν

Rµν,α = 0 .

Renormalizability in fourth derivative QG:
K. Stelle, Phys. Rev. D (1977).

General proof in QG, using Batalin-Vilkovisky formalism:
P.M. Lavrov, I.Sh., Gauge invariant renormalizability of quantum
gravity, arXiv:1902.04687; PRD.

Textbook-level introduction: I.L. Buchbinder and I.Sh.,
Introduction to Quantum Field Theory with Applications to Quantum
Gravity (Oxford Univ. Press, 2021).
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Gauge invariant renormalizability in QG/GR
The Faddeev-Popov approach, with gµν(x) = ηµν + hµν(x)

Stot = S(h) +
1
2
χµYµνχ

ν + C̄µMν
µCν , Mν

µ =
δχν

δhλσ
Rλσ,µ .

The useful choices of gauge fixing conditions and the weight
function depend on the theory, e.g., the background gauge

χµ = ∇νhµν − β∇µh , Yµν = αgµν ,

Independent on the parametrization and gauge fixing, e.g., α
and β, one can prove that the divergent part of effective action,
Γdiv = Γdiv (gµν), in all orders of loop expansion, is local and
satisfies the gauge identity

δΓdiv

δgµν
Rµν,α = 0 .

Multiplicative renormalizability depends on a power count ing.
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Power counting in QG
The power counting of a diagram with an arbitrary number of
external lines hµν and number of their derivatives d(G) is
defined by the superficial degree of divergence ω(G),

ω(G) + d(G) =
∑

lint

(4 − rI) − 4V + 4 +
∑

V

KV .

The first sum is over internal lines of the diagram, rI is the
inverse power of momentum in the propagator of the given
internal line, and V is the number of vertices. KV is the
number of derivatives acting on the given vertex.

In addition, there is the topological relation L = I − V + 1.

As important example, consider quantum GR.

SEH = − 1
16πG

∫

d4x
√−g (R + 2Λ) .

In this case we get ω(G) + d(G) = 2 + 2L − 2KΛ.
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What we know (almost) for sure
is that higher derivatives bring massive degrees of freedom .
Those can be normal fields, ghosts, tachyons, and/or tachyon ic
ghosts.

We can assume that the contributions of these massive degree s
of freedom decouple in the IR.

The natural (and probably correct) assumption is that below the
typical mass scale of the massive degrees of freedom there
remain only quantum effects of the massless graviton, i.e., the
effective QG should be based on Einstein’s gravity.

J.F. Donoghue, Phys. Rev. D 50 (1994) 3874.

From this perspective, the running which takes place in
renormalizable or superrenormalizable models of QG, may ta ke
place only above the greater mass in the spectrum of QG.

This means, typically, above the Planck scale.
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Gauge-fixing dependence

One can analyse the situation with gauge and parametrizatio n
dependencies without explicit calculations, using the gen eral
QFT theorems, see, e.g.,

I.Y. Aref’eva, A.A. Slavnov, L.D. Faddeev, Theor. Math. Phys. (1974).

G. Costa and M. Tonin, Rivista Nuovo Cim. 5 (1975).

B.L. Voronov, P.M. Lavrov, I.V. Tyutin, Sov. J. Nucl. Phys. (1982).

W. Kummer, Eur. Phys. J. C21 175 (2001), hep-th/0104123.

This formalism was applied to quantum gravity in

E.S. Fradkin and A.A. Tseytlin, NPB 201 (1982).

I.Sh, A. Jacksenaev, PLB 324 (1994) 284.

Also, it was confirmed by explicit calculations, e.g., in
R.E. Kallosh, O.V. Tarasov and I.V. Tyutin, NPB 137 (1978).

M. Kalmykov, Class. Quant. Grav. 12 (1995) 1401.

J. Gonçalves, T. de Paula Netto, I.Sh., PRD 97 (2018), 1712.03338.
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How can we get an invariant definition of RG in QG?

The best solution is based on the Vilkovisky–DeWitt (VdW)
scheme for constructing effective action in quantum gravit y.

G.A. Vilkovisky, Nucl. Phys. B234 (1984).

A.O. Barvinsky and G.A. Vilkovisky, Phys. Repts. 119 (1985).

B.S. DeWitt, The effective action, (Essays in honor of the sixtieth
birthday of E.S. Fradkin, 1987).

We need that (at least) one-loop divergences do not depend on
the gauge-fixing and parametrization of the quantum metric.

Then, we can achieve the universal running of the coefficient s of
ρΛ, R, R2 and, in fact, of all other terms of the action.

And the VdW approach makes it possible, and even gives more

T. Taylor and G. Veneziano, Nucl. Phys. B 345 (1990).

B. Giacchini, T. de Paula Netto, I.Sh., JHEP (2020), 2009.04122.
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For the effective QG based on Einstein’s GR with the CC, this
prescription gives

Γ̄
(1)
div = −1

ǫ

∫

d4x
√−g

{

121
60

C2 − 151
180

E +
31
36

R2 + 8ΛR + 12Λ2
}

.

This, completely invariant, result enables us to construct the
renormalization group equations

µ
d

dµ

(

1
16πG

)

=
8Λ

(4π)2 , µ
dΛ
dµ

= −2(16πG)Λ2

(4π)2 . (∗)

The solutions can be easily found in the form ( γ0 = 16πG0Λ
2
0).

G(µ) =
G0

[

1 + 10
(4π)2 γ0 ln µ

µ0

]4/5
, Λ(µ) =

Λ0
[

1 + 10
(4π)2 γ0 ln µ

µ0

]1/5
.

In the V-DW approach, we get a well-defined renormalization
group running of the Newton and cosmological constants
between the Planck and Hubble scales!

This result is because of effective QG, as we assume that belo w
the Planck scale all extra degrees of freedom get inactive.
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The renormalization group (RG) equations in effective QG:

µ
d

dµ

(

1
16πG

)

=
8Λ

(4π)2 , µ
dΛ
dµ

= −2(16πG)Λ2

(4π)2 . (∗)

The two most remarkable properties of these equations and th eir
solutions are as follows:

i) Universality. Eqs. (*) do not depend on the gauge fixing,
parametrization of quantum fields or any kind of hypothesis
and assumptions, except using the VdW effective action.

ii) Can be regarded exact, i.e., not restricted to one-loop o rder.
All higher-loop corrections are suppressed by the powers of

Λ

M2
P

=
ρΛ

M4
P

.

In the present-day Universe this quantity is of the order of
10−120, but even in the inflationary epoch it is at least 10−12.

Thus, RG equations (2) describe an effectively exact running.
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For the cosmological constant
(vacuum energy) density, is there a chance that the running o f
vacuum CC breaks down the fine tuning between ρ

vac
Λ = ρΛ and

ρ
ind
Λ , making an extra trouble related to the CC problem?

Consider the strongest option - the SUSY GUT case. Then
MX ∼ 1016 GeV and hence

∣

∣ρΛ
∣

∣ =
∣

∣ρvac
Λ

∣

∣ ≈ ρind
Λ ∝ M4

X =⇒ γ0

(4π)2 ∼ 8
(MX

MP

)4
≈ 10−11.

Accordingly, we get, as a very good approximation,

G(µ) = G0

[

1 − 8 γ0

(4π)2 ln
µ

µ0

]

and ρΛ(µ) = ρ0
Λ

[

1 +
6 γ0

(4π)2 ln
µ

µ0

]

.

The main point is that the effective quantum gravity running
depends on the vacuum part ρΛ only.

But what happens with the observed sum ρ
obs
Λ = ρΛ + ρ

ind
Λ ??
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The answer depends of the magnitude of the running, i.e., of

δρobs
Λ = ρobs

Λ (UV ) − ρobs
Λ (IR) =

6γ0

(4π)2 ρ
0
Λ ln

(µUV

µIR

)

.

In cosmology, standard identification is µ ∼ H (Hubble const).

This running produces a discrepancy with the cosmological
observations much more than 1050 for a change of just about
an order of magnitude in the parameter H.

As we already know, for a typical SUSY GUT model

γ0

(4π)2 ∝ 10−11, also ln
(µUV

µIR

)

= ln
(Hinflation

H0

)

≈ 130.

Consequently, if we “believe” in the VDW effective action in QG,
then SUSY GUT’s are ruled out.
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What about lower energy physics?

What if we have to “rule out” the Minimal Standard Model of
particle physics (MSM)??

Assuming that the MSM is valid up to the Planck scale, we get

6
(4π)2 γ0 ∼ 48

(MF

MP

)4
≈ 10−65.

Multiplying by ρ0
Λ ∼ M4

F , the variation is

δρobs
Λ ≈ 10−55 ln

(

H
H0

)

GeV4 ≈ 10−53 GeV4 ≈ 10−6 ρobs
Λ .

Thus, the model of effective QG running is lucky enough to pas s
the test related to MSM. The opposite output would mean the
disproval of the Vilkovisky and DeWitt approach in QG.

However, since the result is O(M8
F ), the existence of any kind of

“new physics” based on the symmetry breaking beyond the
scale 10MF , contradicts the CC running in effective QG.

Ilya Shapiro, Effective quantum gravity, cosmological con stant and the Standard Model of particle physics



Conclusions

• The great CC problem looks impossible to solve, as it
comes from summing up completely independent contribution s:
induced and vacuum, the last has to be fine-tuned.

• Even accepting the fine-tuning, this does not make our life
completely free of the CC problem.

• In the IR region, i.e., below the mass spectrum of the
fundamental higher derivative gravity, we meet an effectiv e QG,
which is remarkable in several respects.

• Assuming the Vilkovisky-DeWitt unique effective action, w e
arrive at the well-defined RG equations, which turn out exact , in
the sense they are free from the higher-loop corrections.

• It is remarkable that the effective CC running, derived in
this framework, provides a relation between the cosmologic al
constant problem and the particle physics.
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