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The effective action (Seff ) for the Gaussian theory is defined as:

Z = eiSeff =

∫
d [φ]eiS[φ] =

∫
d [φ] exp

[
i
2

∫
dd x

√
g
(
∂µφ∂µφ− m2φ2

)]
(1)

It is straightforward to see that

∂

∂m2
log

∫
d [φ]eiS[φ] = −

i
2

∫
dd x

√
−g G(x , x). (2)

This allows one to express the effective action via the Feynman propagator in the
coincidence limit:

Seff = −
1
2

lim
M→∞

∫
dd x

√
−g
∫ m2

M2
dm̄2 G(x , x). (3)

In the case of the finite temperature field theory, one has to use the thermal Feynman
propagator:

Gβ(x , y) =
Tr
[
e−βH Tφ(x)φ(y)

]
Tr e−βH

. (4)

The problem reduces to the construction of the scalar field propagator, then taking the
coincidence limit, with an appropriate regularization.
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The thermal Feynman propagator in the Minkowskian coordinates is:

Gβ(x , t) =
∫

dd−1k
(2π)d−1

[
eiωk |t|−i k⃗ x⃗

2ωk

1
eβωk − 1

+
e−iωk |t|+i k⃗ x⃗

2ωk

(
1 +

1
eβωk − 1

)]
.

(5)

The effective action is:

Sβ
eff = −

Vd−1T
2

∫ m2

M2
dm̄2

∫
dd−1k

(2π)d−1 ωk

[
1
2
+

1
eβωk − 1

]
, (6)

where T is the duration of time and Vd−1 is the spatial volume.

The 1/2 term diverge, it is the standard UV divergence that do not depend on
temperature.

iSβ
eff → −βFβ = −Vd−1

∫
dd−1k
(2π)d−1

log
[
1 − e−βωk

]
. (7)

Free energy is:

finite

depend on the volume of space
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The metric of d dimensional Rindler chart is:

ds2 = e2ξα
(
− dη2 + dξ2

)
+ dx⃗2, (8)

in the following we will set the acceleration to one α = 1.
The thermal Feynman propagator of the free massive scalar field is:

Gβ

(
η2, ξ2, x⃗2|η1, ξ1, x⃗1

)
= (9)

=

∫ dd−2k

(2π)d−2

∫ ∞

0

dω

π2

[
eiω|η2−η1|−i⃗k∆⃗x sinh(πω)Kiω

(√
m2 + k2eξ1

)
Kiω

(√
m2 + k2eξ2

) 1

eβω − 1
+

+e−iω|η2−η1|+i⃗k∆⃗x sinh(πω)Kiω
(√

m2 + k2eξ1
)

Kiω
(√

m2 + k2eξ2
) (

1 +
1

eβω − 1

) ]
.

Thermal propagator has an anomalous singularity at the horizon for
non–canonical temperatures β ̸= 2π

α
(Unruh temperature).

For β = π one can represent the propagator in the following form:

Gπ

(
η2, ξ2, x⃗2|η1, ξ1, x⃗1

)
= (10)

= G2π

(
e2ξ1 + e2ξ2 − 2eξ1+ξ2 cosh(η1 − η2) + (⃗x1 − x⃗2)

2
)
+

+G2π

(
e2ξ1 + e2ξ2 + 2eξ1+ξ2 cosh(η1 − η2) + (⃗x1 − x⃗2)

2
)
.

First term is the standard Poincare invariant two-point function for the canonical
temperature β = 2π

α
.

Second term is finite inside the Rindler wedge but becomes singular once both its
points are taken to the horizon
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The effective action is:

Sβ
eff = −TAd−2

∫ m2

M2
dm̄2

∫
dd−2k
(2π)d−2

∫ +∞

0

dω
π2

sinh(πω)

[
1
2
+

1
eβω − 1

]
× (11)

×
∫ ∞

−∞
dξe2ξKiω

(√
m̄2 + k2eξ

)
Kiω

(√
m̄2 + k2eξ

)
,

where Ad−2 is the volume of the transverse (d − 2)-dimensional flat space, and T is
the duration of time.
This expression has several divergences.

The first divergence (temperature independent) is coming from the 1/2 term. This
is the standard UV divergence.

The second divergence (temperature dependent) is due to divergence of Green
function on the horizon.
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By using UV cut-off 1
ϵ

:

iSβ
eff → −βFβ =

π2

3β
Ad−2

α

∫ ∞

ϵ2

ds

(4πs)
d
2

e−sm2
. (12)

By using cut-off of horizon eαξ = δ:

iSβ
eff → −βFβ = β

A2α
3

2880π2δ2

[(
2π/α
β

)4
+ 10

(
2π/α
β

)2
]

(13)

There is an essential difference between the free energy of the scalar field in the
Rindler and Minkowski:

temperature dependence depends on the regularization procedure

proportional to the ”area” of the horizon Ad−2

after subtracting the zero-point fluctuations, the free energy in Minkowski
coordinates is finite in contrast to the Rindler one
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The d-dimensional de Sitter space-time is the hyperboloid embedded in the
(d + 1)–dimensional ambient Minkowski space-time:

dSd = {X ∈ Rd,1, XαXα = −R2}, α = 0, d . (14)

In what follows, we set the de Sitter radius to R = 1. The static patch of the de Sitter
space-time is covered by the coordinates as follows:

X 0 =
√

1 − r2 sinh t
X 1 =

√
1 − r2 cosh t

X i = rzi 2 ≤ i ≤ d
, t ∈ (−∞,∞), r ∈ (0, 1). (15)

Where zi are the coordinates on the (d − 2)–dimensional sphere. In these
coordinates, the de Sitter metric takes the form:

ds2 = −
(

1 − r2
)

dt2 +
(

1 − r2
)−1

dr2 + r2dΩ2
d−2. (16)

Thermal propagator has an anomalous singularity at the horizon for
non–canonical temperatures β ̸= 2π

H (Gibbons-Hawking temperature) similarly to
the Rindler space-time.
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The effective action has the following form:

iSβ
eff → −βFβ =

β

2d−1π

∫
γ

dy
πy
β

coth
(

πy
β

)
− 1

2y2

eiνy

sinhd−1
(

|y|
2

) . (17)

where contour γ = (−∞,−ϵ) ∪ (ϵ,∞) and ν =

√
m2 −

(
d−1

2

)2
. Where is a

difference between odd and even dimensions. In odd dimensions, one can use
Cauchy’s residue theorem to evaluate the integral.

Fβ = lim
R→∞

lim
ϵ→0

(
I(−R,−ϵ)∪(ϵ,R) + ICR

+ ICϵ
− ICϵ

)
. (18)

The sum of the first, second, and third terms define as F bulk
β and the forth term as F hor

β .

The contour integrals in F bulk
β give, via the Cauchy residue theorem by the two set

of poles:

y = iβn, n ∈ Z+ and y = i
2π
H

k k ∈ Z+. (19)

The fourth term F hor
β diverges in the limit ϵ → 0 .

F hor
β = −ICϵ

=

d−1
2∑

k=1

a2k−1(m, β)

ϵ2k−1
+ a0(m, β) + O(ϵ), (20)
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The finite term of F hor
β is:

a0(m, β) =
(−1)

d+1
2

3
md−2

Hβ2

AdS
d−2

2dπ
d−2

2 Γ
(

d
2

) , (21)

where AdS
d−2 = 2π

d−1
2

Γ
(

d−1
2

) 1
Hd−2 is the surface area of the boundary of the static de Sitter

space-time.
This expression is consistent with the finite contribution to the effective action in the
Rindler:

Fβ =
(−1)

d−1
2

3
md−2

αβ2

Ad−2

2dπ
d−2

2 Γ
(

d
2

) . (22)

Dmitrii Diakonov MIPT, ITEP Free energy and entropy in Rindler and de Sitter space-times (MQFT-2022) October 14, 2022 13 / 16



The method and setup Free energy in the Minkowskian coordinate Free energy in the Rindler chart Free energy in the de Sitter space time

In the limit of large mass (i.e. limit of the week field), the main contribution to F bulk
β

comes from the the closest to the real axis pole, whose position depends on the
temperature:

F bulk
β ≈


− 1

2d−1β
[
i sin
(

βH
2

)]d−1 e−βm , if β < 2π
H

− (im/H)d−2

2d+1Hπ2 i(d−2)!

[
π

2π/H
β

cot
(
π

2π/H
β

)
− 1
]

e− 2π
H m , if β > 2π

H

. (23)

Thus:

large temperature limit — F bulk
β ∼ e−βm

low temperature limit — F bulk
β ∼ e− 2π

H m.
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In the flat space limit H
m → 0:

F bulk
β ≈ −

∞∑
n=1

1
2d−1βn

e−βmn[
i sin

(
nβH

2

)]d−1 ≈ −
∞∑

n=1

1
βn

e−βmn

[inβH]d−1 . (24)

Then, if βm → 0, one obtains that:

F bulk
β ≈ (−1)

d+1
2

V sdS
d−1

βd

ζ(d)Γ
(

d
2

)
π

d
2

. (25)

F hor
β proportional to the area of the horizon and contains divergent terms (similar

to the free energy in the Rindler chart)

F bulk
β proportional to the volume of the space-time and finite (similar to the free

energy in the Minkowskian coordinates.)
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The main bulk contribution to the free energy in the limit m
H → 0:

F bulk
β ≈ −

1
2β

∫ ∞

L

dy
y

e− 1
d−1

m2

H2 y ≈
1

2β
log

(
L

d − 1
m2

H2

)
≈

1
β
log
(√

L
m
H

)
. (26)

Free energy contains a logarithmic term — in any dimension.
Thus the logarithmic corrections to Bekenstein-Hawking entropy is:

S ≈
AdS

d−2

4
−

1
d − 2

log
(

AdS
d−2

)
. (27)

This logarithmic contribution becomes much larger than the classical entropy in the
limit of a small de Sitter radius.
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