Dissipation in the formalism of time-dependent Green's functions at finite temperature

Slava Krivorol, Michail Nalimov

Institute of Theoretical and Mathematical Physics, Lomonosov Moscow State University

«Models in Quantum Field Theory»

The known methods

The main questions:

- How to describe dissipation in quantum systems?
- How to calculate the kinetic coefficients from first principles?

The known methods:

- Non-Hamiltonian disspative formalism (Lindbland equation,...).
- Projection operators, $\hat{\rho} = \hat{\rho}_{relevant} + \hat{\rho}_{irrelevant}$.
- Linear response theory (Green Kubo formulas,...).
- Phenomenological models (stochastic differential equations),

$$\partial_t arphi_a = (lpha_{ab} + eta_{ab}) rac{\delta S^{st}}{\delta arphi_b} + \zeta_a.$$
 (1)

Introduction

- Motivation: to provide the method of calculation of kinetic coefficients and probe it on a simple model.
- Model systems: fermions or bosons with weak local interactions,

$$\hat{H} = \int d^3 \mathbf{x} \, \hat{\psi}^+(\mathbf{x}, t) igg(-rac{\Delta}{2m} - \mu igg) \hat{\psi}(\mathbf{x}, t) + g \int d^3 \mathbf{x} \, \hat{\psi}^+(\mathbf{x}, t) \hat{\psi}(\mathbf{x}, t) \hat{\psi}^+(\mathbf{x}, t) \hat{\psi}(\mathbf{x}, t).$$
 (2)

• We want to describe the dynamics of equilibrium fluctuations on large scales and calculate the kinetic coefficient.

The main object

The 2-point Green's function:

$$\left\langle \hat{\psi}(x_1, t_1) \hat{\psi}^+(x_2, t_2) \right\rangle = \operatorname{Sp}\left(\operatorname{T}\{\hat{\psi}(x_1, t_1) \hat{\psi}^+(x_2, t_2)\} \hat{\rho} \right).$$
 (3)

Action:

$$\mathcal{S} = \int\limits_{C} dt igg[\psi^+(\mathrm{x},t) ig(i \partial_t + rac{\Delta}{2m} + \mu ig) \psi(\mathrm{x},t) - g \psi^+(\mathrm{x},t) \psi(\mathrm{x},t) \psi^+(\mathrm{x},t) \psi(\mathrm{x},t) igg].$$

Keldysh variables

$$\xi = \frac{\psi_R + \psi_A}{\sqrt{2}}, \ \eta = \frac{\psi_R - \psi_A}{\sqrt{2}}, \ \xi^+ = \frac{\psi_R^+ + \psi_A^+}{\sqrt{2}}, \ \eta^+ = \frac{\psi_R^+ - \psi_A^+}{\sqrt{2}}.$$
 (5)

Propagators in Keldysh variables:

$$G_{\eta\xi^{+}} = -e^{-i\varepsilon(t-t')}\theta(t'-t), \tag{6}$$

$$G_{\xi\eta^+} = e^{-i\varepsilon(t-t')}\theta(t-t'),\tag{7}$$

$$G_{\xi\xi^{+}} = e^{-i\varepsilon(t-t')} (1 \pm 2n(\varepsilon)), \tag{8}$$

$$G_{\eta\eta^+} = 0. (9)$$

Notations:

$$G_{\eta\xi^{+}} = - \longleftarrow, \qquad G_{\xi\eta^{+}} = - \longleftarrow, \qquad G_{\xi\xi^{+}} = - \longleftarrow.$$
 (10)

Interactions:

$$S_{int} = g(\xi^{+}\xi\xi^{+}\eta + \xi^{+}\xi\eta^{+}\xi + \xi^{+}\eta\eta^{+}\eta + \eta^{+}\xi\eta^{+}\eta).$$
 (11)

«Pinch» singularities

$$\left| \sum_{\mathbf{p}=0, \ \omega=0}^{\infty} d(t-t') \right|_{\mathbf{p}=0}^{\infty} = \left(12 \right)$$

$$= \frac{\mp \zeta g^2}{(2\pi)^6} \int d^3\mathbf{k} d^3\mathbf{q} \left(\pi \delta(\varepsilon(\mathbf{k}+\mathbf{q}) - \varepsilon(\mathbf{k}) - \varepsilon(\mathbf{q})) + \underbrace{\frac{i}{\varepsilon(\mathbf{k}+\mathbf{q}) - \varepsilon(\mathbf{k}) - \varepsilon(\mathbf{q})}}_{\text{Singular}} \right) \times$$

$$\times (1 \pm 2n(\mathbf{k}))(1 \pm 2n(\mathbf{q})).$$

Singular diagrams:

Regularization:

$$e^{-i\varepsilon(t-t')} \to e^{-i\varepsilon(t-t')-\gamma|t-t'|}, \quad \gamma = \alpha \frac{p^2}{2m}.$$
 (13)

The origin of dissipation

Dyson equation:

$$D^{-1} = K - \Sigma \Rightarrow D_{\eta^{+}\xi}^{-1} = i\omega + i\varepsilon + \gamma - \Sigma_{\eta^{+}\xi}. \tag{14}$$

The sum of sunset diagrams in hydrodynamic limit:

$$I(\mathbf{p}, \ \omega) \approx I(\mathbf{p}, \ \omega) \left| \sum_{\substack{\mathbf{p}=0\\\omega=0}}^{\mathbf{p}=0} + \omega \frac{\partial I(\mathbf{p}=0, \ \omega)}{\partial \omega} \right|_{\omega=0} + \frac{p_i p_j}{2!} \frac{\partial^2 I(\mathbf{p}, \ \omega=0)}{\partial p_i \partial p_j} \right|_{\mathbf{p}=0}.$$
(15)

Result

• Propagators and one loop:

$$\left\langle \hat{\psi}(t_1)\hat{\psi}^+(t_2) \right\rangle \sim \exp\bigg(-i\Big(rac{p^2}{2m}-\mu\Big)(t_1-t_2)\bigg).$$
 (16)

• Two loops:

$$\left\langle \hat{\psi}(t_1)\hat{\psi}^+(t_2)\right\rangle \sim \exp\left(-i\left(\frac{p^2}{2m}-\mu\right)(t_1-t_2)\underbrace{-\tilde{\alpha}\frac{p^2}{2m}|t_1-t_2|}_{\text{dissipation}}\right).$$
 (17)

By analogy with phenomenological models, $\tilde{\alpha}$ is the kinetic coefficient.

Asymptotic of some integrals

The contributions to $\tilde{\alpha}$ are given by:

$$\lim_{\alpha \to 0} \frac{\mp 2\zeta g^{2} m^{2}}{(2\pi)^{6}} \cdot \operatorname{Re} \int d^{3}k d^{3}q \frac{f(k,q)}{\left[i(k\cdot q) - \alpha(k^{2} + k\cdot q + q^{2})\right]^{2}}, \tag{18}$$

$$\lim_{\alpha \to 0} \frac{\mp 2\zeta g^{2} m}{(2\pi)^{6}} \cdot \operatorname{Re} \int d^{3}k d^{3}q \left(-\frac{if(k,q)}{\left[i(k\cdot q) - \alpha(k^{2} + k\cdot q + q^{2})\right]^{2}} + \frac{2}{3} \frac{f(k,q) \cdot (k+q)^{2}}{\left[i(k\cdot q) - \alpha(k^{2} + k\cdot q + q^{2})\right]^{3}} + \frac{f_{1}(k,q)}{i(k\cdot q) - \alpha(k^{2} + k\cdot q + q^{2})} + \frac{2}{3} \frac{if_{2}(k,q) \cdot (k+q)^{2}}{\left[i(k\cdot q) - \alpha(k^{2} + k\cdot q + q^{2})\right]^{2}}, \tag{19}$$

$$f(p,k,q) = 4n(k)n(q) \mp 4n(p-k-q) - 8n(k)n(p-k-q). \tag{20}$$

(20)

After calculating the integrals

$$ilde{lpha}=g^2m^2\,T^2F(\,T/\mu).$$

Fermions with positive (left) or negative (right) chemical potentials.

Bosons with negative chemical potentials.

Conclusions

- Existing methods for calculating the kinetic coefficients are difficult to carry out real calculations.
- Based on the formalism of the time-dependent Green's time functions at finite temperature the new method for calculating the kinetic coefficients in quantum systems has been developed.
- To calculate the kinetic coefficient, it is necessary to carry out a rather complicated asymptotic analysis of a certain class of integrals.