

SRC at BM@N: reconstruction of tracks upstream and downstream the target using the MWPC and Silicon detector systems

Vasilisa Lenivenko for SRC at BM@N collaboration

BM@N

The NICA facility

Short Range Correlations

Approximately 20% of nucleons in a nucleus belong to strongly interacting, short-lived correlated pairs.

2N Short Range Correlated pair:

- Nucleons within these pairs have high absolute and low center of mass momentum.
- Almost all high-momentum nucleons in the nucleus belong to SRC pairs.
- SRC pairs are the important part of the nuclear wave function and also the densest objects available on Earth.
- They are relevant for understanding of dense baryonic matter and neutron stars.
- They are also important for nuclear parton distribution functions and neutrino oscillations.

The new part of physics program of BM@N is about Short Range Correlations!

SRC RUN CONFIGURATION (IN 2018):

Analysis: Proton momentum before the interaction

First analysis paper submitted for publication!

• The momentum of the proton in the nucleus before interaction are key part physical analysis

• The proton momentum before the interaction was reconstructed using 3 vectors :

Incoming vector to the target and 2 protons in the arms

Analysis: momentum of the residual ion

First analysis paper submitted for publication!

The residual nuclei momentum was restored based on two straight segments: upstream and downstream the analyzing magnet

The possibility of registering the residual nuclei is a unique opportunity to BM@N!

Improved Track Reconstruction in MWPCs

MWPC working regime was not optimal- the clusters were huge

1. Track-segment formed using

- $X_1U_1V_1$ $X_2U_2V_2$
- Reconstruct & fit track-segment in each chamber 2.
- Extrapolate segments to $Z_{0,1} = (Z1+Z2)/2$ & select best pairs by χ^2 criteria, 3. angles are not taken into account
- MWPC track in Pair0 and Pair1 4.

0		L <u>_</u>		<u> </u>			Ĩ
2000				1		5	6
4000							
6000 ^{[-}							
8000							
0000							
2000			-9				
4000	tra	ick-s	egm	ent	-		
6000Ē	Nu	imbe	er of	poin	ts pe	r	

MWPC-Track (Pair1) Parameters downstream the target

Track Reconstruction in Silicon Detector

1. X and X' (2.5°) neighboring fired strips – cluster center $CoG = \frac{\sum^{N} A_{i} * i}{\sum^{N} A_{i}}$, A_i-charge amplitude on i-th strip 2. Track Reconstruction using various cases

Silicon was not the most optimal configuration
X's reading ineffective

Two Stages of MWPC-Si Matching

We need a straight track upstream the analyzing magnet (for identification). There were 2 systems (MWPC and Silicon Detector), We need to make a combined track from them

1. Si Tracks – MWPC Tracks (Pair1) matching with minimal distance

2. Matching of rest Si Tracks with MWPC Segments (Chamber 2 or Chamber 3)

Good detector resolution achieved

Detector and algorithm efficiency

Detector and algorithm efficiency

Conclusion

- Track reconstructed using MWPC and Si are a key element for the first physics analysis submitted for publication
- MWPC, Si and the combined MWPC-Si track reconstruction was developed and implemented in BmnRoot classes
- Simulation of MWPC and Si was developed and will be implemented in BmnRoot classes for the full BM@N simulation in the near future

Thank you for your attention!

Back up

Charge vs Run number using BCs counters

PairO – Pair1 matching; Run 3430 (empty target); CinCoutcut

PairO – Si matching; Run 3430 (empty target); CinCoutcut

All MWPC & SiDet are aligned correspondently the magnet: all means = 0

PairO – Upstream matching; Run 3430 (empty target); CinCoutcut

All MWPC & SiDet are aligned correspondently the magnet: all means = 0

Multi Wire Proportional Chambers

The intersection of these planes is a working area.

This point should satisfy the following condition:

V + U - X = 0

Silicon Tracking detector

640 X strips with 0° 640 X' strips with 2.5° The pitch of X strips : 95 μ m The pitch of X' strips :103 μ m. Thickness of detectors is 300 μ m

The contribution to the collected charge value is given by both electron and hole flow. Double-Sided Silicon Detectors (DSSD)

•2-coordinate Si strip detector

Capability of stable operation in conditions of high loadings up to 10^6 Hz/cm² Response time is 10-15 ns Coordinate resolution ~ 50 μ m

Full sensitive size of 12 x 12 cm²

Full sensitive size of 25 x 25 cm^2