Comparison of methods for elliptic flow measurements at NICA energies $\sqrt{s_{NN}} = 4 - 11 \text{ GeV}$

<u>Vinh Ba Luong</u>¹, Dim Idrisov¹, Petr Parfenov¹, Arkadiy Taranenko¹, Alexander Demanov¹, Anton Truttse¹

¹National Research Nuclear University MEPhl For the MPD Collaboration

This work is supported by the RFBR according to the research project No. 18-02-40086

The XXIV International Scientific Conference of Young Scientists and Specialists 09-13 November 2020 JINR, Dubna, Russia

Outline

- Elliptic flow (v₂) at NICA energies
- Description of Q-Cumulant, event plane and scalar product methods
- Sensitivity of different methods to flow fluctuations and nonflow
- Performance of v₂ of inclusive charged hadrons and identified hadrons in MPD (NICA)
- Summary and outlook

Phase Diagram of the Strongly-Interacting Matter

Top RHIC/LHC:

- validation of the cross over transition leading to the sQGP
- access to high T and small $\mu_{\scriptscriptstyle B}$

RHIC-BES/SPS/NICA/FAIR

- access to different systems
- broad domain of the (μ_B,T) -plane

Anisotropic Collective Flow at top RHIC / LHC

- Initial eccentricity (and its attendant fluctuations) ε_n drives momentum anisotropy v_n with specific viscous modulation
- v_1 directed flow, v_2 elliptic flow, v_3 triangular flow
- $v_n(p_T, centrality)$:
 - sensitive to the early stages of collision
 - important constraint for transport properties: EoS, η /s, ζ /s, etc.

Elliptic flow at NICA energies

Taranenko et. al., Phys. Part. Nuclei **51**, 309–313 (2020)

- Strong energy dependence of v2 at √s_{NN} = 3-11 GeV
 - \cdot v₂≈0 at $\sqrt{s_{NN}}$ = 3.3 GeV and negative below
- Lack of differential measurements of v₂ at NICA energies (p_τ, centrality, PID,...)
- v₂ is sensitive to the properties of strongly interacting matter:
 - At $\sqrt{s_{NN}}$ = 4.5 GeV pure string/hadronic cascade models (UrQMD, SMASH,...) give similar v_2 signal compared to STAR data
 - At $\sqrt{s_{NN}} \ge 7.7$ GeV pure string/hadronic cascade models underestimate v_2 need hybrid models with QGP phase (vHLLE+UrQMD, AMPT with string melting,...)

MPD Experiment at NICA

Multi-Purpose Detector (MPD) Stage 1

- Centrality determination: Impact parameter b
- Event plane determination: TPC, FHCal
- Track selection:
 - Primary tracks
 - ► $N_{TPC \text{ hits}} \ge 16$
 - $0.2 < p_{T} < 3.0 \text{ GeV/c}$
 - |η| < 1.5
 - PID based on PDG

$$-5 < \eta < -2$$
 $-1.5 < \eta < 1.5$ TPC $0.2 < p_{\tau} < 3 GeV/c$ FHCal

Elliptic flow measurements using v2 of produced particles in TPC

$$u_2 = \cos 2\varphi + i \sin 2\varphi = e^{2i\varphi} \tag{1}$$

$$Q_2 = \sum_{j=1}^{M} \omega_j u_{2,j}, \Psi_{2,\text{TPC}} = \frac{1}{2} \tan^{-1} \left(\frac{Q_{2,y}}{Q_{2,x}} \right) \quad (2)$$

Scalar Product:
$$v_2^{\text{SP}}\{Q_{2,\text{TPC}}\} = \frac{\langle u_{2,\eta\pm}Q_{2,\eta\mp}^* \rangle}{\sqrt{\langle Q_{2,\eta+}Q_{2,\eta-}^* \rangle}}$$
 (3)

Event Plane:
$$R_2^{\text{EP}}\{\Psi_{2,\text{TPC}}\} = \sqrt{\langle\cos[2(\Psi_{2,\eta+} - \Psi_{2,\eta-})]\rangle}$$

$$R_2^{\text{EP}}\{\Psi_{2,\text{TPC}}\} = \sqrt{\langle\cos[2(\Psi_{2,\eta+} - \Psi_{2,\eta-})]\rangle} \qquad v_2^{\text{EP}}\{\Psi_{2,\text{TPC}}\} = \frac{\langle\cos[2(\varphi_{\eta\pm} - \Psi_{2,\eta\mp})]\rangle}{R_2^{\text{EP}}\{\Psi_{2,\text{TPC}}\}}$$
(4)

Q-cumulants:

$$\langle 2 \rangle_2 = \frac{|Q_n|^2 - M}{M(M-1)} \approx v_2^2 + \delta \quad \langle 4 \rangle_2 = \frac{|Q_n|^4 + |Q_{2n}|^2 - 2|Q_{2n}Q_n^*Q_n^*| - 4M(M-2)|Q_n|^2 + 2M(M-3)}{M(M-1)(M-2)(M-3)} \approx v_2^4 + 4v_2^2\delta + 2\delta^2$$

$$v_2\{2\} = \sqrt{\langle\langle 2\rangle\rangle}$$
 $v_2\{4\} = \sqrt{2\langle\langle 2\rangle\rangle^2 - \langle\langle 4\rangle\rangle}$ (5)

 δ – nonflow contribution

Description of event plane method using FHCal

Using v_1 of particles in FHCal to determine Q_n

$$Q_{1,x} = \frac{\sum E_i \cos(\varphi_i)}{\sum E_i}, Q_{I,y} = \frac{\sum E_i \sin(\varphi_i)}{\sum E_i}$$
(1)

$$\Psi_{1,\text{FHCal}} = \text{ATan2}(Q_{1,y}, Q_{l,x})$$
 (2)

$$R_{2} \left[\Psi_{1,\text{FHCal}} \right] = \left\langle \cos \left[2 \left(\Psi_{RP} - \Psi_{1,\text{FHCal}} \right) \right] \right\rangle \tag{3}$$

$$v_{2} \left[\Psi_{1,\text{FHCal}} \right] = \frac{\left\langle \cos \left[2 \left(\varphi - \Psi_{1,\text{FHCal}} \right) \right] \right\rangle}{R_{2} \left[\Psi_{1,\text{FHCal}} \right]} \tag{4}$$

E – energy deposition in FHCal modules (2< $|\eta|$ <5)

Energy distribution in FHCal

Sensitivity of different methods to flow fluctuations

• Elliptic flow fluctuations:

$$\sigma_{v_2}^2 = \langle v_2^2 \rangle - \langle v_2 \rangle^2 \qquad (1)$$

• The difference between v_2 {2} and v_2 {4}:

$$v_2\{2\} \approx \langle v_2 \rangle + \frac{1}{2} \frac{\sigma_{v_2}^2}{\langle v_2 \rangle}, v_2\{4\} \approx \langle v_2 \rangle - \frac{1}{2} \frac{\sigma_{v_2}^2}{\langle v_2 \rangle}$$
 (2)

• The difference between $v_2^{EP}\{\Psi_{1,FHCal}\}$ and $v_2^{EP}\{\Psi_{2,TPC}\}$:

$$v_2^{\text{EP}}\{\Psi_{1,\text{FHCal}}\} \approx \langle v_2 \rangle, v_2^{\text{EP}}\{\Psi_{2,\text{TPC}}\} \approx \langle v_2 \rangle + \frac{1}{2} \frac{\sigma_{v_2}^2}{\langle v_2 \rangle}$$
 (3)

Star data: Phys. Rev. C 86, 054908 (2012)

- Relative v_2 fluctuations (v_2 {4}/ v_2 {2}) observed by STAR experiment can be reproduced both in the string/cascade models (UrQMD, SMASH) and hybrid model (AMPT with string melting)
- Dominant source of v_2 fluctuations: participant eccentricity fluctuations in the initial geometry

Comparison of v2 measurements using different method

 $v_2\{4\}$ and $v_2^{\it EP}\{\Psi_{1.FHCal}\}$ are smaller than $v_2\{2\}$ due to fluctuation and nonflow

Performance study of v2 of pions and protons in MPD

Reconstructed and generated v₂ of pions and protons have a good agreement for all methods

Summary and outlook

• v₂ at NICA energies shows strong energy dependence:

- ► At $\sqrt{s_{NN}}$ = 4.5 GeV, v_2 from UrQMD, SMASH are in a good agreement with the experimental data
- ► At $\sqrt{s_{NN}} \ge 7.7$ GeV, UrQMD & SMASH underestimate v_2 need hybrid models with QGP phase
- Lack of existing differential measurements of v_2 (p_T , centrality, PID, ...)

Comparison of methods for elliptic flow measurements using UrQMD model:

The differences between methods are well understood and could be attributed to non-flow and fluctuations

Feasibility study for elliptic flow in MPD:

• v₂ of identified charged hadrons: results from reconstructed and generated data are in a good agreement for all methods

Outlook:

• v_1 , v_2 and v_3 measurements for the hybrid models (production of 60 M events for vHLLE+UrQMD at $\sqrt{s_{NN}}$ = 11 GeV is ongoing)

Backup

Setup, event and track selection

Momentum, GeV/c

Momentum, GeV/c

Non-uniform acceptance

How robust the future measurements against non-uniform acceptance?

Acceptance correction

The applied acceptance corrections eliminated the influence of non-uniform acceptance

Performance study of v2 of inclusive charged hadrons in MPD

Reconstructed (reco) and generated (true) v₂ values are in a good agreement for all methods

Results from UrQMD model of Au+Au collisions at √sNN = 7.7 GeV

 v_2 {4} is smaller than v_2 {2} due to fluctuations and non-flow

Au+Au vs. Bi+Bi collisions for reconstructed data in MPD

Expected small difference between colliding systems

Eccentricity: Bi+Bi vs Au+Au

UrQMD model predicts small difference between ε_n of Au+Au and Bi+Bi