

Status of the GEM tracking system at the BM@N experiment

Andrei Galavanov on behalf of the BM@N Collaboration

The XXIV International Scientific Conference of Young Scientists and Specialists (AYSS-2020)

NICA complex

BM@N experiment

BM@N provides a unique opportunity to study strange mesons and multi-strange hyperons close to the kinematic threshold. One of the main goals is to measure yields of light hypernuclei, which are expected to be produced in coalescence of Λ -hyperons with nucleons.

Experimental setup for high intensity heavy ion beams

The gas electron multiplier (GEM)

Electron microscope picture of a section of typical GEM foil: 50 μ m thick capton foil, metalized on each side by 5 μ m thick copper electrodes . The holes pitch and diameter are 140 and 70 μ m, respectively.

Electric field in the region of the holes in a GEM foil.

Electron avalanche in GEM holes.

BM@N GEM detectors

Schematic cross section of the BM@N triple GEM detector

BM@N GEM detectors

Readout board

Cathode plane

GEM tests on Nuclotron beams

In Ar and Kr runs, the value of electric field in drift gaps of GEM detectors was increased. The gas 7 mixture was changed to Ar(80)/Isobutane(20). The Lorentz shift of electrons avalanche was decreased.

Λ -hyperon signals

Scheme of the GEM full planes configuration

Lorentz shifts of an electron avalanche in GEM planes

On top - 7 detectors with active area $1632 \times 450 \text{ mm}^2$ On bottom - 7 detectors with active area $1632 \times 390 \text{ mm}^2$

Full planes configuration inside the SP-41 magnet

Active area of the GEM tracking system is around 9.5 $m^2\,$

Space for the installation and alignment is limited by the aperture of our magnet

10.2020 – development
of the mechanics design for GEM
planes inside the magnet.
2021 – mechanics production,
installation of the GEM planes.

Material budget of the GEM central tracking system full configuration

Material budget in the BM@N, Integrated radiation length, X/X0 [%]

Assembly of the stand for long-term GEM tests

DAQ system

Scintillation detectors

Main goals: to study geometrical efficiency and spatial resolution

Gas system

Gas system requirements :

- stable flow and mixture parameters;
- 7 independent channels to each GEM-plane;
- reducing and control oxygen and moisture impurities in gas mixture;

of moisture level in the gas. COMPASS

Conclusions

- 7 detectors $1632 \times 450 \text{ mm}^2$ and 7 detector $1632 \times 390 \text{ mm}^2$ are produced;
- 7 detectors 1632×450 mm² was tested at d, C, Ar, Kr ion beams;
- 2 spare detectors are waiting for the assembly at CERN;
- High Voltage and Low Voltage systems are ready;
- Mechanics for GEM-planes inside the magnet has been developed;
- Assembling the stand for testing the GEM-detectors with cosmic rays has been finished;
- Tests of 1632*390 mm² detectors with cosmic rays are in progress;
- Gas system is under upgrade.

Deadline – autumn 2021

Back up slides

Material budget of one Gem detector

layer	material	density [g/cm-3]	thickness (X) [cm]	X0 [cm]	X/X0 [%]
gas	ArCO2 (70/30)	0.0019	0.9	10960.2	0.0082
copper	copper	8.96	0.0131	1.435	0.9129
glue	acrylic glue	1.25	0.02	32.1603	0.0622
epoxide	polyurethane (high dens.)	1.8	0.21	22.5351	0.9319
	Polyurethane (medium dens.)	0.59	0.21	68.7512	0.3055
	Polyurethane (low dens.)	0.25	0.1	162.253	0.1295
honeycomb	nomex aramid honeycomb (kevlal chemical structure)	0.048	3.0	755.397	0.3971
polyamide	polyamide	1.14	0.025	36.4052	0.0687

GEM HV divider scheme

490 mkA – working point for Ar (70) + CO_2 (30) gas mixture 370 mkA – working point for Ar (90) + Isobutane (10) gas mixture 430 mkA – working point for Ar (80) + Isobutane (20) gas mixture

Mixture	I, mkA	DR,	Gem 1,V	TR1,	Gem 2, V	TR2,	Gem 3,V	IND,
		kV/cm		kV/cm		kV/cm		kV/cm
Ar (70) +	490	1.17	402	2.58	382	3.68	363	4.18
CO ₂ (30)								
Ar (90) +	370	0.88	303.4	1.92	288.6	2.78	273.8	3.16
$C_4 H_{10}(10)$								
Ar (80) +	430	1.5	352.6	2.24	335.4	3.23	318.2	3.67
C ₄ H ₁₀ (20)								

GEM efficiency (cosmic tests)

GEM gas gain measurements

GEM gas gain for Ar(70)/CO2(30) and Ar(90)/Isobutane(10) gas mixtures