XXIV International Scientific Conference of Young Scientists and Specialists (AYSS-2020)

pp→tH Monte-Carlo study of Higgs boson production in association with a single top quark at 13 TeV

O. Koval, N. Huseynov, I. Boyko

DNLP, JINR

10.11.2020

pp→tH: Analysis stages

- 1. Parton level
- MadGraph vs ATLAS MC Data
- MadGraph SM vs BSM
- MadGraph Signal tHbq vs Bkg tt, ttH
- 2. Jet truth level
- Efficiency and quality of MadGraph SM truth jet matching
- Event selection cuts at jet level
- Backgrounds ttbb, ttZ, tZbq
- Variation of cuts for optimization of Signal to Bkg ratio
- New variables for optimization of Signal to Bkg ratio
- 3. BDT/NN Analysis
- 4. Full simulation/reconstruction level, real data analysis (next step)

- AYSS-2019 Conference

this presentation

Higgs production and decay modes

- gg→H (<mark>87%</mark>)
- pp \rightarrow VVqq \rightarrow Hqq (7%)
- qq \rightarrow V* \rightarrow VH (4%)
- gg \rightarrow tttt \rightarrow ttH (1%)

Purity

Observed

• H → γγ (0.23%)

H → ZZ* (2.6%)
→ ℓℓℓℓ

• H \rightarrow WW* (21.4%) $\rightarrow \ell \nu \ell \nu$

•
$$H \rightarrow \tau\tau$$
 (6.3%)
• $H \rightarrow bb$ (58%)

Can be observed later at LHC:

- $H \rightarrow Z\gamma$ (0.15%)
- H →μμ (0.02%)
 - Can be observed only at future colliders:
- H → cc (2.9%)
- $H \rightarrow gg$ (8.2%)

ttH vs tH

- pp → tH cross-section is 5-7 times smaller than that of pp → ttH
 - ...mostly because of the destructive interference between ttH and WWH vertices, both contributing to pp \rightarrow tH

tΗ

- Top Yukawa coupling is directly measured in pp → ttH events
- However, ttH is only sensitive to square (i.e. absolute value) of y_t
- tH is the only channel sensitive to sign of y_t (or more generally to its complex phase)
- More generally, it is sensitive to the phase between ttH and WWH
- The ratio tH/ttH may vary between 0.2 (SM) to 2.5 (ITC scenario y_t=-y_t,SM)

How to select tHbq events

- A hard lepton and large missing $E_{\rm T}\, from$ semileptonic top decays
- Very energetic, very forward jet, with large rapidity gap from the rest of the event
- b-tagging: 3 or 4 b-jets (for H→bb), 1 or 2 b-jets for other channels
- Need NN to exploit all available information

Signal and background generation

We generate Signal and Background using MadGraph MG5_aMC_v2_6_3_2 at 13 TeV.
Private Monte-Carlo truth level data (LO, 4-fl) is produced for

Signal:

- pp \rightarrow tHbq(H \rightarrow bb), BSM (Y_t = -1)
- pp \rightarrow tHbq(H \rightarrow bb), SM (Y_t = +1)

SM Background:

- $pp \rightarrow tt main source of Bkg$
- $pp \rightarrow ttbb$
- pp \rightarrow ttH(H \rightarrow bb)
- pp \rightarrow ttZ(Z \rightarrow bb)
- $pp \rightarrow tZ(Z \rightarrow bb)$

	tHbq(BSM)	tHbq(SM)	tt	ttbb	ttH	tZ	ttZ	
ross Section MadGraph, pb ⁻¹	0.4829	0.0355	746	8.917	0.1963	0.0635	0.0885	
Generated Number of Events	100K	100K	1M	100K	100K	100K	100K	

Cross section of SM tH is very small, so we can't detect this signal at LHC RUN II. However, there is a chance to observe BSM signal in RUNII data.

7

PDF set: CT10; m(b): 4.2 GeV; m(t): 172.5 GeV m(H): 125 GeV; Y_b: +1; Y_t: (+1) (SM) and (-1) (BSM)

Reconstruction of analysis objects

- Pythia is used for showering and hadronization.
- Delphes is used for truth jet reconstruction and missing E_{T} calculation.
- We take leptons at truth level, no attempt to introduce an artificial smearing
- Jets are reconstructed from the truth final-state particles after hadronization.
- Neutrino is reconstructed from the MET of the reconstructed jets
- Neutrino P_T reconstructed as jet missing E_T using Delphes Algorithm, P_Z reconstructed from m_W constraint.
- Top is reconstructed from b-jet, lepton and MET (W mass constraint, 2 solutions)
- Higgs is reconstructed from 2 b-jets
- A forward ("tagging") jet is also required

Efficiency and quality of jet reconstruction for Bkg ttH (jet from b quark from top)

Event Selection (before cut optimization)

- Find leading lepton, veto sub-leading lepton: $|\eta^{\text{Lead lep}}| < 2.5$, $P_T^{\text{Lead lep}} > 25 \text{ GeV}$, $P_T^{\text{Sublead lep}} < 15 \text{ GeV}$, $|\eta^{\text{Sublead lep}}| < 2.75$
- $E_T^{miss}: E_T^{miss} > 40 \text{ GeV}$
- Definition of any jet: P_T > 25 GeV
- Number of b-jets: $3 \le N_{b-jets} \le 4$
- Forward light jet: Jet with highest P_T among all jets $|\eta| > 2$
- P_T of forward light jet: $P_T^{FWD} > 30 \text{ GeV}$
- Rapidity gap: $\Delta \eta = |\eta_{FWD} \eta_{b-jet}| > 1.5$
- Mt, MH are loose&tight cut

Cut-flow (events normalized to 140 fb⁻¹)

	Signa tH	BSM bq	Bkg tH	SM Ibq	Bk	g SM tt	Bkg tt	SM bb	Bkg tt	SM H	Bkg t2	g SM Zbq	Bkg tt	SM Z
Cross section, pb^{-1}	0.4	829	0.0	355	•	746	8.9	917	0.19	963	0.0	0885	0.06	35
Generated number of events	205	549	193	213	41	0707	40	472	373	66	20	312	370	60
Generated number of events, normalized to 140 fb ⁻¹	13892	100%	956	100%	14M	100%	0,51M	100%	10269	100%	2516	100%	3295	100%
Leading lepton, veto sub- leading lepton: Eta ^{Lead lep} < 2.5 , P _T ^{Lead lep} > 25 GeV, P _T ^{Sublead lep} < 15 GeV, Eta ^{Sublead lep} < 2.75	8083	58.2%	536	56.1%	7.4M	51.8%	0.24M	48.1%	4801	46.8%	1422	56.5%	1536	46.6%
E_{T}^{miss} : E_{T}^{miss} > 40 GeV	4926	35.5%	315	32.9%	4.7M	32.8%	0.16 M	31%	3270	31.8%	872	34.7%	1041	31.6%
Number of b-jets: $3 \le N_{b-jets} \le 4$	2988	21.5%	192	20.1%	260K	1.8%	40K	7.9%	2237	21.8%	459	18.3%	705	21.4%
P _T of forward light jet: P _T ^{FWD} > 30 GeV	1985	14.3%	126	13.2%	91K	0.6%	17K	3.4%	916	8.9%	311	12.4%	296	9%
Rapidity gap: ∆Eta = Eta _{FWD} - Eta _{b-jet} > 1.5	1383	9.9%	62	6.5%	42K	0.2%	7.8K	1.5%	428	4.2%	151	6%	128	3.9%
Higgs and Top mass	856	6.2%	36	3.8%	31K	0.2%	2K	0.4%	99	0.9%	84	3.3%	30	0.9%

tt(SM) vs ttbb(SM) at LO

• Signal: at least 3 b-jets expected (1 from top, 2 from Higgs).

Typical ATLAS/CMS fake b-tagging rate:

From c-quarks we have in 12% cases fake b-jets and

From light quarks we have in 0.2% cases fake b-jets.

Background tt: only 2 b-jets from tops.
3rd b-jet: either from ttbb, or fake b-tagging (from c in W → cs, or from light jets).

For 140 fb⁻¹, N_{tt}=31K (SM), N_{ttbb}=2K (SM)

So, ttbb less than tt by 15 times!

Optimization of selection cuts

Selection cuts were varied and optimal value was found from maximum S/ \sqrt{B} significance

Nº cut	Cut	Starting value	Variations
1	Pt of lead lepton >	25 GeV	27 GeV
2	Pt of definition of jets >	25 GeV	30, 35 GeV
3	Et_miss >	40 GeV	20 , 30 GeV
4	Eta of definition of forward light jet >	2.0	1.5, 2.25, 2.5
5	Pt of definition of forward light jet >	30 GeV	20, 25 GeV
6	Rapidity Gap >	1.5	<mark>1</mark> , 1.25
7	Cuts of m_top & m_Higgs	1Loose, 1Tight	<mark>both loose,</mark> both tight

Event Selection (after cut optimization)

- Find leading lepton, veto sub-leading lepton: $|\eta^{\text{Lead lep}}| < 2.5$, $P_T^{\text{Lead lep}} > 27 \text{ GeV}$, $P_T^{\text{Sublead lep}} < 15 \text{ GeV}$, $|\eta^{\text{Sublead lep}}| < 2.75$
- E_T^{miss} : $E_T^{miss} > 20 \text{ GeV}$
- Definition of any jet: P_T > 25 GeV
- Number of b-jets: $3 \le N_{b-jets} \le 4$
- Forward light jet: Jet with highest P_T among all jets $|\eta| > 2$
- P_T of forward light jet: $P_T^{FWD} > 30 \text{ GeV}$
- Rapidity gap: $\Delta \eta = |\eta_{FWD} \eta_{b-jet}| > 1$
- Mt, MH are loose&loose cut

Missing Transverse Energy Signal BSM&SM tHbq vs Bkg SM ttH, tt, ttbb, tZbq, ttZ

Leading lepton, veto sub-leading lepton:

 $|\eta^{\text{Lead lep}}| < 2.5$, $P_{\tau}^{\text{Lead lep}} > 27 \text{ GeV}$, $P_{\tau}^{\text{Sublead lep}} > 15 \text{ GeV}$, $|\eta^{\text{Sublead lep}}| < 2.75$

We normalized histograms to 140 fb⁻¹

Number of b-jets (fake including) Signal BSM&SM tHbq vs Bkg SM ttH, tt, ttbb, tZbq, ttZ

Finding of forward light jet:

We study different cut for P_T , P_{Total} and $|\eta|$.

Final optimum for all jets:

Jet with highest P_T among all jets $|\eta| > 2.0$

Correctly identified jets are found in \sim 90% cases.

Forward Light Jet Signal BSM tHbq vs Bkg SM ttH, tt, ttbb, tZbq, ttZ

Transverse momentum of forward light jet

18

Pseudorapidity vs Transverse momentum of forward light jet Signal BSM tHbq vs Bkg SM ttH, tt, tZbq Normalized histograms to 140 fb⁻¹

Rapidity Gap Signal BSM tHbq vs Bkg SM ttH, tt, ttbb, tZbq, ttZ

Number of b-jets: $3 \le N_{b-jets} \le 4$ P_T of forward light jet: P_T ^{FWD} > 30 GeV

Jet-parton association tHbq BSM, SM vs Bkg SM ttH, tt, ttbb, tZbq, ttZ

Number of b-jets: $3 \le N_{b-jets} \le 4$

 \succ In event we have 3 b-jets.

> Need to associate each jet with its parton.

- > We have 3 combinations: 1 correct and 2 wrong.
- > We find correct combination using reconstruction of masses of

top-quark and Higgs (chose the one with best χ^2).

$$\chi^{2} = \left(\frac{\mathbf{M} - \mathbf{M}_{\mathrm{H}}}{\sigma_{\mathrm{H}}}\right)^{2} + \left(\frac{\mathbf{M} - \mathbf{M}_{\mathrm{t}}}{\sigma_{\mathrm{t}}}\right)^{2}$$

Reconstruction of top and Higgs masses

Cut-flow (events normalized to 140 fb⁻¹)

	Signa tH	BSM bq	Bkg tH	SM Ibq	Bk	g SM tt	Bkg tt	SM bb	Bkg tt	SM H	Bkg tZ	sM Zbq	Bkg tt2	SM Z
Cross section, pb ⁻¹	0.4	829	0.0	355	-	746	8.9	917	0.19	963	0.0	0885	0.06	35
Generated number of events	205	549	192	213	41	0707	40	472	373	66	20	312	370	60
Generated number of events, normalized to 140 fb ⁻¹	13892	100%	956	100%	14M	100%	0,51 M	100%	10269	100%	2516	100%	3295	100%
Leading lepton, veto sub- leading lepton: Eta ^{Lead lep} < 2.5 , P _T ^{Lead lep} > 27 GeV, P _T ^{Sublead lep} < 15 GeV, Eta ^{Sublead lep} < 2.75	7756	55.8%	508	53.1%	7.1M	49.8%	0.23M	46.2%	4623	45.0%	1346	53.5%	1473	44.7%
E_{T}^{miss} : E_{T}^{miss} > 20 GeV	6857	49.4%	450	47.1%	6.3M	44.4%	0.21M	41.3%	4171	40.6%	1205	47.9%	1335	40.5%
Number of b-jets: 3 ≤ N _{b-jets} ≤ 4	4150	29.9%	276	28.9%	380K	2.7%	55K	10.9%	2889	28.1%	644	25.6%	907	27.5%
P _T of forward light jet: P _T ^{FWD} > 30 GeV	2760	19.9%	183	19.1%	130K	0.9%	24K	4.7%	1168	11.4%	435	17.3%	381	11.6%
Rapidity gap: ∆Eta = Eta _{FWD} - Eta _{b-jet} > 1	2264	16.3%	121	12.6%	75K	0.5%	14K	2.9%	703	6.8%	282	11.2%	211	6.4%
Higgs and Top mass	1519	10.9%	77	8.0%	59K	0.4%	4.4K	0.9%	206	2.0%	182	7.2%	58	1.8%

 $S = Nsig/\sqrt{N_{bkg}}$

Starting cut values – Signal significance: 0.2σ (SM), 4.7σ (BSM)

Optimized cut values –

Signal significance: 0.3σ (SM), 6.0σ (BSM)

	Yields	Cross section, pb
tHbq BSM	1519 ± 32	0.4829
tHbq SM	77 ± 2	0.0355
tt	51217 ± 1436	746
ttbb	$4\ 407\pm235$	8.917
ttH	206 ± 8	0.1963
tZbq	182 ± 5	0.0885
ttZ	58 ± 2	0.0635
Total Bkg	56070 ± 1455	

Cut-and-count analysis finished. Next step: MVA analysis. We prepare additional variables with signal/background separation power.

List of MVA input variables

- We concentrate on variables inspired by CMS paper: CMS Collaboration // Phys. Rev. D 99, 9 (2019) 092005
- Invariant mass of 3 jets with max PT
- Fox-Wolfram Moment (0-4 states) of all jets
- Fox-Wolfram Moment (0-4 states) of I+v+all jets
- Aplanarity
- ΔR between 2 nonb-jets with max PT
- $Cos \theta(b_{\nu} I)$
- $Cos \theta(b_{\nu} I)^*$ (in top quark rest frame)

- Also we investigate new variables:
- $|\Delta \phi|(t-H), |\Delta \eta|(t-H), M(t+H)$
- Rapidity gap: $|\Delta\eta|$ (FWD,H) $|\Delta\eta|$ (FWD,top)
- Central non-b with max P_T: M(H+jet)
- Forward non-b with max P_T: M(H+jet)

Number of all variables: 110

Comparison of signal tHbq SM&BSM and Bkg tt

Comparison of signal tHbq SM&BSM and Bkg tt

Summary and plans

- ✓ AYSS-2019 Conference:
 - Studied preselection cuts at the parton level (Signal only)
 - Added background simulation ttH, tt
 - Performed analyses on simulated jet level
- ✓ Presented at this meeting:
 - Added Signal simulation tHbq (SM)
 - Added background simulation ttbb, , tZbq, ttZ, tHbq (SM)
 - Performed analyses on simulated jet level with new backgrounds
- ✓ Event selection cuts optimized
- ✓ With 140 fb⁻¹ signal significance is 6.0 (BSM) and 0.30 (SM)
- \checkmark Event yields: 56070 \pm 1455 (background), 77 \pm 2 (SM signal), 1519 \pm 32 (BSM signal)
- ✓ Results of this study
 - 1) Determination of neutrino P_z
 - 2) Discovered that dominant background is not ttbb, but tt with W→cs, and c mistagged as b
 - 3) b-jet association with top or Higgs decays using best χ^2 of M_t and M_H
- ✓ As a separate study, we plan to use the selected events as input for a MVA to improve the significance

Thank you for your attention!

Significance of tHbq SM: variation of pt of FWD cut 0,3045 0,304 0,3035 0,303 0,3025 0,302 0,3015 0,301 0,3005 0,3 0,2995 20 GeV 25 GeV 30 GeV

MC generator MadGraph

MadGraph MG5_aMC_v2_6_3_2

- LHAPDF-6.1.6 (last version)
- **ExRootAnalysis:** A package to convert the various output (LHE) in a ROOT format.
- **Pythia 8.2:** A package containing Pythia8. Pythia8 is able to shower and to hadronize your events and is able to perform the matching for multi-jet production.
- **Delphes:** A package allowing to have a fast detector simulation, in replacement of PGS.

MadEvent

a multi-purpose event generator powered by MadGraph

Minimal User Guide

madgraph version: V4.1

Authors:

J. Alwall¹, P. Demin², S. de Visscher³, R. Frederix⁴, M. Herquet⁵, F. Maltoni⁶, T. Stelzer⁷

Reconstructed mass of top-quark in leptonic decay mode t \rightarrow blv: choose right sign of neutrino P_z

Reconstruction of m_W

• For reconstructed W-boson's mass:

$$m_W^2 = \left(E_l + \sqrt{\left(E_{miss}^T\right)^2 + P_{L,v}^2}\right)^2 - \left(P_{T,l} + E_{miss}^T\right)^2 - \left(P_{L,l} + P_{L,v}\right)^2,$$

 E_l is the energy of lepton and P_l denote longitudinal momenta of the lepton and neutrino $P_{T,l}$ is the transverse of the lepton.

• we need to choose solution with right sign of P_z from two solutions:

$$P_{Z,v}^{\pm} = \frac{1}{P_{T,l}^{2}} \left(\mu P_{Z,l} \pm E_{l} \sqrt{\mu^{2} - P_{T,l}^{2} \left(E_{miss}^{T} \right)^{2}} \right)^{2}$$
$$P_{T,l} = \sqrt{E_{l}^{2} - P_{Z,l}^{2}}; \quad \mu = \frac{m_{W}^{2}}{2} + P_{X,l} E_{miss}^{T,X} + P_{Y,l} E_{miss}^{T,Y}; \quad m_{W} = 80.35 \text{GeV}$$

Dubna group's choice of right sign of P_z

• In our choice we consider the differences:

$$\Delta m^{\pm} = \left| m_{t}^{\pm} - 172.5 \right|$$

We choose the solution, which provides the smallest Δm => correct $|\eta_c|$ and another solution gives the wrong $|\eta_{WR}|$

So we note the sign of the P_z as correct, if reconstructed mass of topquark is closest to right $m_t = 172.5 GeV$.

And we calculate $|\eta_c|$ and $|\eta_{WR}|$ for correct and wrong sign of solution of P_z, if the solution is real.

Comparison choice with P_z at parton level

• From truth information of $|\eta_{\rm TR}|$ of neutrino at parton level we know which solution is correct

Correct choice $|\eta_C| = \min ||\eta_{\pm}| - |\eta_{TR}||$

Wrong choice $\left| \eta_{_{W\!R}} \right|$ is second solution

is second solution, which is not minimum of
$$\|\eta_{\pm}| - |\eta_{\pi}|$$

We compared two existing top quark mass reconstruction methods: "Single-Top Group" and "Dubna group" methods

In what percent of cases each of these methods do correct choice of sign P_z? $\eta_C |-\eta_{WR}|$

	Single-Top Group	Dubna group
percent of cases each of these methods select correct solution	63%	73.9%

PT of Leading Lepton Signal BSM & SM tHbq vs Bkg SM ttH, tt, ttbb, tZbq, ttZ

Leading lepton, veto sub-leading lepton:

 $|\eta^{\text{Lead lep}}| < 2.5$, $P_{\tau}^{\text{Lead lep}} > 27 \text{ GeV}$, $P_{\tau}^{\text{Sublead lep}} > 15 \text{ GeV}$, $|\eta^{\text{Sublead lep}}| < 2.75$

We normalized histograms to 140 fb⁻¹

41

Number of jets matched

Fake b-jets Bkg SM tt

We take fake b-jets from c-quark and light quarks, which come from hadronic decay of top-quark.

From c-quarks we have in 12% cases fake b-jets and

From light quarks we have in 0.2% cases fake b-jets.

Jet-parton association tHbq BSM

Number of b-jets: 3≤N b-jets≤4

In event we have 3 b-jets. We have 3 combinations: 1 correct and 2 wrong

Normalized histograms to the same area

Jet-parton association tHbq BSM

Reconstruction of top and Higgs masses

Both top and Higgs masses must satisfy loose criteria, and at least one of them must satisfy tight criterium.

Three possible combinations

1. <u>Loose cut & Loose cut</u> : (75 GeV < m_H < 155 GeV) & (140 GeV < m_t < 210 GeV)

2. Loose cut & 1 Tight cut : (75 GeV < m_H < 155 GeV) & (155 GeV < m_t < 180 GeV) or (140 GeV < m_t < 210 GeV) & (90 GeV < m_H < 135 GeV)

3. <u>Tight cut & Tight cut</u>: (90 GeV < m_µ < 135 GeV) & (155 GeV < m₊ < 180 GeV)

Reconstruction of top and Higgs masses

Selection of top and Higgs masses Jet-parton association tHbq BSM

Number of b-jets: 3≤N _{b-jets}≤4

	Efficiency of correct combination	Impurity (selection of wrong combination)
Number of events before cuts	3039 100%	6078 100%
2 Loose cuts	82%	17%
1Loose+1Tight cuts	66%	9%
2 Tight cuts	53%	5%

tt(SM) vs ttbb(SM) at LO

From c-quarks we have in 12% cases fake b-jets and

From light quarks we have in 0.2% cases fake b-jets.

We take fake b-jets from c-quark and light quarks, which come from hadronic decay of top-quark.

For 140 fb⁻¹, N_{tt}=59K (SM), N_{ttbb}=4.4K (SM)

So, ttbb 13 times less than tt.

Cut variation for optimization of Signal to Bkg ratio

Pt of lead lepton > 25 GeV, Pt of definition of jets > 25 Gev, Et_miss > 40 Gev, Rapidity Gap > 1.5,

Pt of definition of forward light jet > 30 GeV, Eta of definition of forward light jet >2, m_top & m_Higgs – loose&tight cuts

Nº cut	Cut	New nominal cut	Variants
1	Et_miss >	20 GeV	30, 40 GeV
2	Eta of definition of forward light jet >	2.0	1.5, 2.25, 2.5
3	Pt of definition of forward light jet >	30 GeV	20,25 GeV
4	Rapidity Gap >	1.0	1.25, 1.5
5	Cuts of m_top & m_Higgs are	Loose&loose	Loose&tight, Tight&tight

Preselection cuts for pp \rightarrow tHqb \rightarrow (b ℓv)(bb)qb

- P^{T}_{lead} > 27 GeV/c, $|\eta_{lead}|$ < 2.5
 - A high-PT lepton must exist to ensure leptonic trigger
- $P_{sublead}^{T}$ < 15 GeV/c, $|\eta_{sublead}|$ < 2.75
 - Other leptons (if any) must have low PT, to ensure single-lepton event topology
- E^T_{miss}> 10 GeV
 - Missing neutrino to reconstruct the top decay
- Nbjets = 3 or 4
- P_{FWD}^{T} > 25 GeV/c, $|\eta_{FWD}|$ > 2.0
 - At least 1 good jet in the forward region

Truth mass of b quarks MadGraph SM/BSM (Parton level)

Difference between mass of b from H (4.2 GeV) and mass of b from top (4.7 GeV)

Comparison MadGraph SM/BSM (Parton level)

P_{T} of b quarks from Higgs boson

P_{T} of b quarks from top quark

Comparison MadGraph SM/BSM (Parton level)

madgraph_bquark_from_gluon_pt_1 η of b quark from gluon Events Events 2/110 Entries Mean RMS madgraph bquark from diag eta Events Entries 34119 4000 Mean -0.009253 500 2.37 RMS SM 450 SM 3000 BSM 400 **BSM** 350 2000 300 250 200 1000 150 100 0 50 100 150 200 250 0 300 350 bquark_from_gluon P_r(GeV) 350 2 3 bquark_from_gluon η

P_T of b quark from gluon

Distribution of P_T and $|\eta|$ of jets for Signal(tHbq) and Bkg(ttH)

55

Efficiency and quality of jet reconstruction for Bkg tt (jet from b quark from top)

Comparison MadGraph Signal (tHbq) /Bkg (tt,ttH)

Comparison MadGraph SM results with BSM results

Comparison MadGraph SM Signal pp->tHbq results with Bkg results pp->tt, pp->ttH

Comparison MadGraph SM/BSM (Parton level)

Forward light quark in tHbq-process

Comparison MadGraph SM/BSM (Parton level) Rapidity gap: Forward light quark, b quarks

Comparison MadGraph Signal (tHbq) /Bkg (tt,ttH)

Ratio of quark distributions: (forward light quark from tHbq) / (background quarks)

Ratio Signal and Bkg Forward light quark in tHbq-process / quarks from W in tt processes

Ratio Signal and Bkg Forward light quark in tHbq-process / quarks from W in ttH processes

Efficiency and quality of jet reconstruction for Signal tHbq (jet from b quark from top)

Efficiency and quality of jet reconstruction for Signal tHbq (jet from forward light quark)

Comparison choice with P₇ on parton level

Method of "Single-Top Group" :

Comparison choice with P₇ on parton level

• Our method: In what percent of cases we have correct choice of sign P_z?

1 is assigned when our solution is closer to $|\eta_{TR}|$, than the other solution 0 is assigned in opposite case

