

Joint Institute for Nuclear Research

Problem-oriented Interface for MICC

Nikita Balashov, Nikolay Kutovskiy, Ivan Sokolov

The XXIV International Scientific Conference of Young Scientists and Specialists (AYSS-2020)

9 November 2020

This work is supported by the Russian Science Foundation under grant #18-71-10095

MICC Resources

- Multifunctional Information and Computing Complex (MICC)
 - Complex of Information and Computing Resources (CICC)
 - JINR Cloud infrastructure
 - HybriLIT heterogeneous platform
- Variety of job schedulers:
 - PBS/TORQUE
 - -HTC ondor
 - -Slurm
- A number of storage systems to choose from:

-Ceph

- Two independent EOS instances (CICC and HybriLIT)
- -dCache
- HybriLIT has its own AuthN/AuthZ system, which prevents it from being fully-integrated to MICC

Project Overview

- Some categories of users have **tight time limits**, e.g. summer students
- **Major time-eaters** when entering a typical research project:
 - Learning the MICC usage
 - Setting up the software environment
- The **goal** of the project is to give **simple access** to the MICC resources and software:
 - Provide a single entry point via web-access for students
 - Hide complexity of MICC structure
 - Tools for research supervisors to define applications and their compatibility with different types of MICC resources
- Benefits:
 - Reduce time spent on technical issues, free up time to spend on the actual research
 - Prevent malicious usage of resources, since students are bound to supervisor-defined applications

Main System Components

- JINR SSO as the authetication system
- Web-portal
 - Fixed number of applications available
 - Individual application parameter sets
 - Common compute resource parameters
- Meta-scheduler:
 - Handles job submission
 - Currently supported resources include:
 - JINR Cloud via HTCondor
 - HybriLIT via Slurm
 - Provides automatic horizontal scaling of HTCondor nodes in the Cloud
- Data storage
 - CephFS pool of the Cloud storage
 - Simple web-access
- CernVM-FS as application storage

Web-portal

- Available at saas.jinr.ru
- No app developer interface yet, user only
- Currently available apps

CPU per VM: 1/5

Resources

JINR cloud HybriLIT cluste

Number of VMs: 1/5

1

- Long Josephson junctions stack simulation
- Short Josephson junctions stack simulation
- Superconductor-Ferromagnetic-Superconductor Josephson junction simulation

RAM per VM (GB): 1/10

1

Hello test				
Long Josephson junctions st	ack simulation			
Short Josephson junctions s	tack simulation			
Superconductor-Ferromagne	tic-Superconductor Josephson junction s	simulation		
	$\int \frac{\partial \varphi}{\partial t} = V,$		$\frac{1}{1}\lambda_{i}$	
	$\begin{cases} \frac{\partial V}{\partial t} = \frac{\partial^2 \varphi}{\partial x^2} - \sin \theta \end{cases}$	$n \varphi - \beta V + I.$	<i>H</i> €	
			λ	
		$\varphi(x,t) _{t=0} = 0, \left. \frac{\partial \varphi(x,t)}{\partial t} \right _{t=0} = 0$),	
	граничны			
		$\left. \frac{\partial \varphi(x,t)}{\partial x} \right _{x=0} = H_{\mathrm{ext}}, \left. \frac{\partial \varphi(x,t)}{\partial x} \right _{x=L} =$	- 17 622	
		$\left. \frac{\partial x}{\partial x} \right _{x=0} = H_{\text{ext}}, \left. \frac{\partial x}{\partial x} \right _{x=L} =$	27 est	
ob poromotoro		$\frac{\partial x}{\partial x}\Big _{x=0} = H_{\text{ext}}, \frac{\partial x}{\partial x}\Big _{x=L} =$	11 est	
ob parameters		$\frac{\partial x}{\partial x}\Big _{x=0} = H_{\text{exs}}, \frac{\partial x}{\partial x}\Big _{x=L} =$	*****	
		$\frac{\partial x}{\partial x}\Big _{x=0} = H_{ass}, \frac{\partial x}{\partial x}\Big _{x=L} =$	24 ET	
ob parameters Physical parameters		$\frac{1}{\partial x}\Big _{x=0} = H_{ass}, \frac{1}{\partial x}\Big _{x=L} =$	*****	
Physical parameters	β:	α:	Noise _{max} (Amp):	
Physical parameters	β: 0.2			
Physical parameters	0.2	α:	Noise _{max} (Amp):	
Physical parameters N: 10	0.2	α:	Noise _{max} (Amp):	
Physical parameters N: 10 Nonperiodic boundary c External electromagnetic ω (Hz):	0.2 onditions cradiation A (Amp):	α:	Noise _{max} (Amp):	
Physical parameters N: 10 Nonperiodic boundary c External electromagnetic	0.2 onditions	α:	Noise _{max} (Amp):	
Physical parameters N: 10 Nonperiodic boundary c External electromagnetic ω (Hz):	0.2 onditions cradiation A (Amp):	α:	Noise _{max} (Amp):	
Physical parameters N: 10 Nonperiodic boundary c External electromagnetic ω (Hz):	0.2 onditions c radiation A (Amp): 5	α:	Noise _{max} (Amp):	
Physical parameters N: 10 Nonperiodic boundary c External electromagnetic ω (Hz): 2	0.2 onditions c radiation A (Amp): 5	α: 0.1	Noise _{max} (Amp):	
Physical parameters N: 10 Nonperiodic boundary c External electromagnetic ω (Hz): 2	0.2 onditions c radiation A (Amp): 5	α:	Noise _{max} (Amp):	
Physical parameters N: 10 Nonperiodic boundary c External electromagnetic ω (Hz): 2	0.2 ondition c radiation A (Amp): 5 ers	α: 0,1	Noise _{max} (Amp): 0.00000001	
Physical parameters N: 10 Nonperiodic boundary c External electromagnetic ω (Hz): 2	0.2 onditions c radiation A (Amp): 5 ers	α: 0,1	Noise _{max} (Amp): 0.0000001	

Future Development

- Web-portal reengineering is in process
- Introduce user groups and roles
- Implement application developer interface and publishing technology
- Built-in data visualization in the web-interface (needs research)
- Reconsider data access technology
- Consider creating a common OS environment via container technology

Thanks!